VARIABILIDADE INTERANUAL DO ÍNDICE DE VEGETAÇÃO NO ESTADO DE PERNAMBUCO

Izabelly Carvalho da COSTA¹, Célia Campos BRAGA²

Introdução

O Estado de Pernambuco situado no Nordeste do Brasil é caracterizado em quase sua totalidade como semi-árido com baixos índices pluviométrico e vegetação predominante do tipo caatinga. Os índices de vegetação oferecem um vasto potencial para o estudo de ecossistema em regiões semi-áridas. A relação da vegetação com a chuva nessas áreas são sensíveis e complexas. A base física desta relação, em geral cresce devido à disponibilidade da umidade do solo, como resultado da variação sazonal da chuva.

O Índice de Vegetação por Diferença Normalizada (IVDN), é obtido pela combinação da radiação refletida dos canais infravermelho próximo e visível do sistema de sensores AVHRR (Advanced Very High Resolution Radiometer) do satélite NOAA (National Oceanic and Atmosphere Administration). Devido a sua pigmentação, a cor verde da vegetação sadia reflete mais no infravermelho próximo e menos no canal do visível, o que ocasiona altos valores para o IVDN. Quando a folha começa a secar ela perde a sua pigmentação verde, aumentando um pouco a reflectância no visível e diminuindo no infravermelho próximo, produzindo valores menores de IVDN. O contraste entre os alvos da superfície ajuda a distinguir a vegetação verde e seca dos demais alvos da superfície. Isto explica o porque da utilização dos dados do índice de vegetação no monitoramento da vegetação (Parkinson, 1997).

De modo geral séries temporais de valores do IVDN do sistema de sensores AVHRR/NOAA, tem sido utilizado por vários pesquisadores com diferentes finalidades. Nicholson & Farrar, (1994) utilizaram dados do IVDN de regiões semi-áridas da África para encontrar uma relação com a chuva e umidade do solo. Almeida, (1997) utilizou dados do IVDN obtidos do AVHRR/NOAA para o cerrado brasileiro para determinar o tempo de resposta da vegetação a precipitação. Braga (2000) fez uso das técnicas de Análise em multivariada para identificar regiões homogêneas e padrões espaciais da variabilidade sazonal e anual do IVDN e da precipitação pluvial na região Nordeste do Brasil. Recentemente, Costa e Braga, (2002) encontraram correlações significativas entre o IVDN e a precipitação para o Estado da Paraíba. No entanto o obietivo deste trabalho consiste em avaliar quantitativamente a variabilidade interanual do índice de vegetação no Estado de Pernambuco no período de 1982 a 1999.

Material e métodos

Os dados remotos do IVDN utilizados neste estudo são composições mensais selecionados para o estado da Paraíba no período de 1982 - 1999, extraídos

das imagens do sistema AVHRR/NOAA, com padrão Global Area Coverage (GAC) do GIMMS. Esses dados são mapeados usando navegação do satélite

remontadas na resolução espacial de 5,5 x 5,5 Km². Os dados resultantes são valores máximos mensais do IVDN recortados para o Estado de Pernambuco, os quais foram organizados em matriz (421 x 18), em que as 421 linhas correspondem os pontos de grade e as 18 colunas os anos, a essa matriz foi empregada à técnica da Análise Fatorial por Componentes Principais (ACP).

A ACP é um ramo da estatística aplicado a problemas que envolvem um grande número de variáveis, e tem por objetivo reduzir ao máximo o volume total do número de variáveis iniciais com a mínima perda de informações e investigar o comportamento espacial e temporal das variáveis envolvidas no problema, assim como detectar grupos de variáveis que apresentam comportamento homogêneo (Ceballos e Braga, 1995; Wilks, 1995).

Resultados e discussão

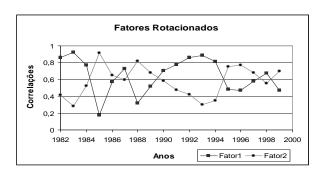
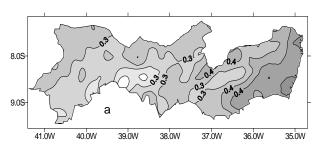
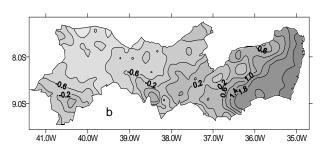
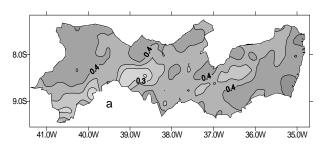
Neste estudo, os fatores comuns obtidos pela aplicação da ACP representam as variações da cronologia (dia, mês ano, etc.) e os multiplicadores (peso) são função do espaço. O emprego desta técnica às séries de dados do IVDN no Estado de Pernambuco, mostra que os dois primeiros autovalores explicam 82,5% da variância total da série (Tabela 1). Assim os dois primeiros fatores comuns são suficientes para certas investigações climáticas do índice de vegetação, reduzindo consideravelmente o número de dados a manipular. A Figura 1 ilustra as correlações dos dois primeiros fatores comuns com a média anual do IVDN. Observase que primeiro fator que explicar 45,6% da variância total da série tem altas correlações (r > 0,8) em 82, 83 e 93. A distribuição do padrão espacial deste fator apresenta maiores valores (pesos), superiores a 1,8 na faixa próxima ao litoral, diminuindo à medida que avança para o interior, chegando a valores negativos no sertão do Estado (Figura 2a). A análise desse primeiro fator e sua distribuição espacial mostra que para os anos secos o índice de vegetação diminui em quase todo o Estado com exceção da região próxima ao litoral, onde a vegetação predominante é a Mata Atlântica (Figura 3b). O segundo fator comum que explica 36,9% da variância apresenta correlações elevadas nos anos de 85, 88, 95 e 96. A distribuição espacial correspondente a esse segundo fator (Figura 2b) apresenta certa homogeneidade na região, excetuando a região do sertão do São Francisco no vale do Pageú (oeste) e agreste meridional (leste), onde os índices de vegetação em média são inferiores aos das demais regiões. A comparação entre a distribuição espacial média do IVDN (Figura 4) no período estudado(18 anos) e nos anos de 85 (chuvoso - Figura 3a) e 93 (seco), mostraram que baixos valores do IVDN nas duas regiões referenciadas acima podem ou não está diretamente associado à precipitação.

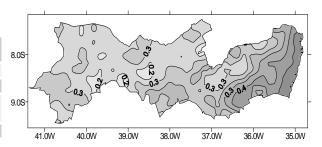
¹ Aluna do Curso de Graduação em Meteorologia do Departamento de Ciências Atmosféricas, DCA, Universidade Federal de Campina Grande, E-mail: izabellycarvalho@zipmail.com.br, Bolsista PIBIC/CNPq.

² Dra. Prof. Tit. Departamento de Ciências Atmosféricas, UFCG, 58109-000 Campina Grande, PB, Bolsista CNPq.

Fatores	Autovalores	% da Variância	% da Variância Acumulada
1	8,208	45,6	45,6
2	6,639	36,9	82,5
÷	:	÷	÷
18	0,218	100,0	100,0

Tabela 1 - Principais fatores comuns espaciais rotacionados do IVDN.


Figura 1 – Série Temporal dos principais fatores.

Figuras 2a e 2b – Distribuição espacial do 1º fator (2a) e do 2º fator (2b) comum rotacionado do IVDN.

Figuras 3a e 3b – Distribuição espacial do IVDN de 1985 (3a) e 1993 (3b).

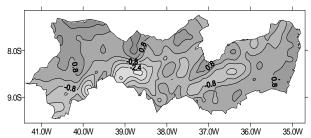


Figura 4 – Distribuição espacial da média anual do IVDN.

Conclusão

Diante da análise dos resultados, conclui-se que, as informações obtidas a partir dos fatores comuns temporais da ACP, mostraram que a variabilidade espacial do índice de vegetação pode ser utilizada como indicador da precipitação interanual nas diferentes regiões do Estado de Pernambuco.

Referências bibliográficas

ALMEIDA, S. A. O. Determinação de redução de umidade superficial na região dos cerrados com imagens AVHRR/NOAA e precipitação pluviométrica. Tese de Doutorado em Ecologia. Brasília, 1997. 316p. Universidade de Brasília.

BRAGA, C. C. Inter-Relações entre Padrões de Índice de Vegetação e de pluviometria no Nordeste do Brasil. Tese (Doutorado em Recursos Naturais) Campina Grande, 2000. 124p. — Universidade Federal da Paraíba.

CEBALLOS, J.C. e BRAGA, C.C. **Missing data** assessment in a solarimetric networks. International Journal of Climatology, 15: 325-340, 1995.

COSTA, I.C. e BRAGA, C.C. Correlações Cruzadas entre o Índice de Vegetação e as Precipitações no Estado da Paraíba. X Encontro de Iniciação Cientifica da UFPB. João Pessoa, 2002. 39p.

NICHOLOSON, S.E & FARRAR, T.J. The IVDN, Rainfall and Soil Moisture in Semiarid Botswana. **Remote Sens. Environment.** 50: 107-120.1994.

PARKINSON, C. L. "Earth from above". University Sciences Books, Sansalito. Land vegetation, 107-111, 1997.

WILKS, S.D. **Statistical methods in the atmospheric sciences.** London, Academic Press. 464p. 1995.