A INFLUÊNCIA DO FENÔMENO LA NIÑA NO BALANÇO HÍDRICO CLIMATOLÓGICO DE PELOTAS, RS

Alexandre do Nascimento Chagas ¹, Simone Vieira de Assis ².

INTRODUÇÃO

No contexto agronômico, entende-se por balanço hídrico a determinação de todos os ganhos e perdas hídricas que se verificam em um terreno com vegetação, de modo a estabelecer a quantidade de água disponível às plantas em dado momento (Mota, 1981). O solo tem uma capacidade de armazenamento de água, que uma vez satisfeita, permite a percolação da água excedente para o lençol freático, sendo essa capacidade, uma característica da planta, independente do tipo de solo (Tubelis, 1983). Se a capacidade de armazenamento de umidade de um solo é conhecida, a equação do balanço da água pode ser resolvida pela comparação da precipitação e da água de irrigação com a razão da evapotranspiração (Mota, 1981).

De acordo com a classificação climatológica de Koppen, o clima de Pelotas é do tipo Cfa, o qual estabelece que a temperatura média do mês mais frio está entre 18º e 3ºC, sendo constantemente úmido, com chuvas bem distribuídas ao longo do ano. Uma vez que os fenômenos El Niño e La Niña influenciam nos valores médios de precipitação (Diniz, 1998), criou-se a necessidade de uma análise detalhada dessa influência no cálculo do balanço hídrico.

MATERIAL E MÉTODOS

O balanço hídrico para a cidade de Pelotas, cujas coordenadas geográficas são as seguintes: latitude 31° 45', longitude 52° 21' e altitude 7 metros, foi calculado segundo o método proposto por THORNTHWAITE E MATHER (1955), o qual considera a profundidade, o tipo e a estrutura do solo para o cálculo da capacidade máxima do armazenamento d'água pelo solo e da taxa de utilização da umidade do solo para a evapotranspiração. Para sua aplicação, foram utilizados dados meteorológicos mensais de temperatura média do ar e precipitação, obtidos na Estação Agroclimatológica de Pelotas, convênio EMBRAPA/ UFPel, durante o período de 1971 a 2000, os quais foram separados por anos de ocorrência de anos neutros e anos de ocorrência de La Niña. Entre os métodos que envolvem relações empíricas para estimar evapotranspiração potencial (ETP), o escolhido para o cálculo deste trabalho foi o de THORNTHWAITE (1948), visto ser em função das temperaturas médias mensais e temperatura média anual do ar. . De acordo com Mota (1979), esta técnica para estimar a evapotranspiração potencial em estudos de balanço hídrico no Rio Grande de Sul tem fornecido resultados bastante satisfatórios.

Os anos de La Niña estudados foram os seguintes: 1971; 1973; 1974; 1975; 1976; 1988; 1989; 1995; 1998; 1999.

Os anos neutros estudados foram os seguintes: 1978; 1979; 1980; 1981; 1984; 1985; 1986; 1990; 2000.

RESULTADOS E DISCUSSÃO

Analisando a Tabela 1, vemos que nos anos de La Niña, com um total médio precipitado de 1192 mm para todo o período estudado, os meses que registraram negativo acumulado são: janeiro (-15 mm); março (-21 mm); abril (-5 mm); outubro (-2 mm); novembro (-20 mm) e dezembro (-42mm). Para estes anos, o armazenamento foi diferente de sua capacidade de armazenamento de água em 6 meses distintos, fazendo com que o abastecimento do solo ficasse comprometido por mais tempo. Isto verifica-se na coluna do déficit a qual sofreu uma elevação considerável.

A evapotranspiração potencial (ETP), foi de 849 mm, atingindo seu valor máximo 126 mm. Já a evapotranspiração real (ER), isto é, a transferência vertical turbulenta de vapor d'água para a atmosfera que efetivamente se verifica, em termos médios, ficou em 842 mm.

Tabela 1. Balanço Hídrico para anos de La Niña

MesesT (°C) ETP		P P-ETPNEG ARM ALT ER EXC D						DEF		
JAN	23	126	149	23	-15	124	23	126	0	0
FEV	22,8	105	123	18	0	138	14	105	4	0
MAR	21,9	101	79	-22	-21	118	-20	99	0	2
ABR	18,2	65	80	15	-5	133	15	65	0	0
MAI	14,7	42	77	35	0	138	5	42	30	0
JUN	11,9	26	93	67	0	138	0	26	67	0
JUL	12,1	29	140	111	0	138	0	29	111	0
AGO	13,4	37	123	86	0	138	0	37	86	0
SET	14,8	47	99	52	0	138	0	47	52	0
OUT	17,1	68	66	-2	-2	136	-2	68	0	0
NOV	19,2	86	68	-18	-20	119	-17	85	0	1
DEZ Total	21,9	117 849	95 1192	-22 343	-42	101	_	_	0 350	4 7

¹- Aluno do curso de graduação em meteorologia/ Fac Met/ UFPEL - Pelotas RS

²- Dpto de meteorologia/ Fac Met/ UFPEL - RS

Analisando a Tabela 3, vemos que nos anos neutros, com um total médio precipitado de 1424 mm para todo o período estudado, os meses que registram negativo acumulado são: janeiro (-29 mm)e dezembro (-6mm). Para estes anos, o armazenamento foi igual à sua capacidade de armazenamento de água na maioria dos meses, fazendo com que o abastecimento do solo, assim como nos anos de El Niño, fosse pleno.

A evapotranspiração potencial (ETP), foi de 862 mm, atingindo seu valor máximo 131 mm. Já a evapotranspiração real (ER), isto é, a transferência vertical turbulenta de vapor d'água para a atmosfera que efetivamente se verifica, em termos médios, ficou em 858 mm.

Tabela 2. Balanço Hídrico para anos neutros **Mes**

es	T (°C)	ETP	Р	P-ETP I	NEG /	ARM	ALT	ER I	EXCI	DEF
JAN	23,5	131	107	-23	-29	112	-20	127	0	4
FEV	23,3	109	144	34	0	138	26	109	8	0
MAR	21,3	96	138	42	0	138	0	96	42	0
ABR	19,1	68	114	46	0	138	0	68	46	0
MAI	15,7	45	123	78	0	138	0	45	78	0
JUN	12	28	110	82	0	138	0	28	82	0
JUL	11,7	29	119	90	0	138	0	29	90	0
AGO	13,5	36	93	57	0	138	0	36	57	0
SET	13,8	45	155	109	0	138	0	45	109	0
OUT	17,7	73	97	24	0	138	0	73	24	0
NOV	19,8	90	119	30	0	138	0	90	30	0
DEZ	21,4	112	106	-6	-6	132	-6	112	0	0
Total		862	1424	562			0	858	566	4

CONCLUSÃO

Nos anos de LA NIÑA o balanço hídrico não apresentou variações muito significantes. Os meses de janeiro, março, outubro, novembro e dezembro foram os que apresentaram um comportamento um pouco diferente dos demais, com relação ao armazenamento, isto devido à demanda evotransporimétrica ter sido maior que a precipitação, não sendo verificado grande déficit hídrico.

Os anos neutros foram os que apresentaram maior uniformidade nos valores de precipitação, os quais, durante quase todos os meses

(com exceção de jan e dez), se mantiveram maiores que a evapotranspiração.

De um modo geral, o balanço hídrico climatológico não mostra variações consideráveis nos anos de ocorrência do El Niño, isto porque os dados de entrada, temperatura e precipitação, são valores médios, não permitindo avaliações mais realísticas dos anos em que o evento foi mais intenso.

REFERÊNCIAS BIBLIOGRÁFICAS.

ZEPKA, G.S. Análise do balanço hídrico para a cidade de Pelotas, RS. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 12, 2002, Foz do Iguaçu. **Anais...** Sociedade Brasileira de Meteorologia, 2002. (CD ROM).

DINIZ, G.B.; SANSIGOLO, C.; SALDANHA, R.L.; Influência do Evento El Niño no Regime de Precipitação da Cidade de Pelotas/ RS In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 10, 1998, Brasília DF. Anais...Sociedade Brasileira de Meteorologia, 1998. (CD ROM).

MOTA, F.S. **Meteorologia Agrícola**. São Paulo, SP: Biblioteca Rural/ Livraria Nobel S/A, 1979.376p..

TUBELIS, A.; NASCIMENTO, F.J.L.Meteorologia Descritiva. Fundamentos e Aplicações Brasileiras. São Paulo, SP: Livraria Nobel S/A, 1983. 374 p..