EROSIVIDADE DA CHUVA NA REGIÃO DO MÉDIO¹ PARANAPANEMA – SP. Exemplo do uso de uma variável climática para diagnóstico ambiental integrado.

Francisco LOMBARDI Neto ¹, Giampaolo PELLEGRINO³, Maria Helena de Almeida MELLO², José Ricardo Macedo PEZZOPANE², Rogério Remo ALFONSI²

RESUMO

Utilizando-se das séries de totais pluviais médios mensais e anual referentes ao período de 1963-1992, para 32 postos da rede pluviométrica do Departamento de Águas e Energia Elétrica do Estado de São Paulo (DAEE), localizados na região do médio Paranapanema – SP e para 1 posto do INEMET, no Norte do Estado do Paraná, estimou-se a erosividade da região, pelo método de LOMBARDI e MORDENHAUEN (1992) e foram elaborados mapas da variação espacial desses índices utilizando-se do sistema geográfico de informação IDRISI. Com o presente artigo pretendese divulgar um método climático simples para estimativa de erosão, apresentar o mapeamento da erosividade com o uso de SGI e discutir os resultados obtidos.

PALAVRAS CHAVE: EROSOSIVIDADE, ÍNDICE CLIMÁTICO.

INTRODUÇÃO

Em nível de espaços regionais, praticamente inexistem dados sobre erosão, fazendo com que se recorra à utilização de complexos modelos de simulação, como o proposto por WILLIAMS et al.(1982), que simula a erosão recorrendo à uma grande quantidade de variáveis climatológicas, para se obter indiretamente essa informação, de grande importância para diagnósticos e planejamentos agroambientais. Transformar esses dados, em geral esparsos, em variáveis espaciais consiste num outro problema de solução também complexa.

Para se acrescentar informações sobre erosão, em um diagnóstico agroambiental elaborado para o médio Paranapanema (lat.: 21° 45′ – 23° 30′ S e long.: 48° 15′ - 51° 15′ W), importante região agrícola do Estado de São Paulo, optou-se pela escolha de um método simples de estimativa de erosividade, que utiliza apenas uma variável climática (chuva) facilmente disponível para a maioria das regiões brasileiras. Na área de estudo, existência de uma rede, relativamente

1Centro de Solos e Estudos Agroambientais – IAC, email: lombardi@barao.iac.br;

2Centro de Ecofisiologia e Biofísica – IAC, email: mhelena@cec.iac.br ,remo@cec.iac.br

3Centro de Ensino e Pesquisa Agropecuária – CEPAGRI-UNICAMP, email: giam@cpa.unicamp.br.

densa, de postos pluviométrico, facilitou a elaboração de cartas representativas da variação espacial da erosividade.

O presente artigo tem por objetivo divulgar um método climático simples para estimativa da erosividade e a variação espacial dos resultados obtidos utilizando-se de recursos de sistemas geográficos de informação (SGI).

MATERIAL E MÉTODOS

Com base nas séries de dados de totais pluviais médios mensais e anual, para o período de 1963 à 1992, de 32 postos pluvimétricos do Departamento de Águas e Energia Elétrica (DAEE) do Estado de São Paulo e 1 posto do Norte de Paraná (IAPAR), em Cambará, estimou-se a erosividade conforme modelo proposto por LOMBARDI e MOLDENHAUER (1992) que consiste em:

$$Ei = 89,823 * (R^2/P)^{0,759}$$
, onde:

Ei = erosividade da chuva, no mês i, em MJ.mm/ha.h; R = precipitação pluvial média, no mês i em mm, P = precipitação pluvial média anual, em mm.

A soma dos valores de Ei resulta na erosividade média mensal, para cada ponto amostral considerado.

Os processamentos dos dados pluviométicos básicos e dos índices de erosividade foram préviamente elaborados no software EXCEL e os resultados, além de constarem dos mapas constam também de quadros com os valores dos índices de erosividade e dos totais médios mensais correspondentes.

Para fins de mapeamento, os índices obtidos foram preliminarmente atribuídos à uma rede geo-refenciada, na escala 1:250.000 e processados através do software SURFACE MAPPING SYSTEM de forma a serem gerados pesos para a interpolação dos índices utilizados. Este procedimento permite a obtenção de melhor qualidade na localização das bandas ou zonas geradas pelo sistema geográfico de informação (SGI) IDRISI, utilizado para a gerar 12 mapas de erosividade mensal, 1 mapa para o período chuvoso (outubro a março), 1 mapa para período de estiágem (abril à setembro) e 1 mapa anual.

O SURFACE utiliza um método geoestatístico de interpolação conhecido como "krigeagem" que consiste em atribuir pesos variáveis à um conjunto de pontos, conforme a variabilidade espacial desses pontos (média móvel ponderada) e o que o diferencia dos demais métodos de interpolação é a maneira pela qual os pesos são distribuídos (VIEIRA et al. , 1983 e

VIEIRA, 1995), gerando resultados mais coerentes com a realidade da distribuição dos pontos amostrais numa dada área.

RESULTADOS E DISCUSSÃO

O quadro 1 apresenta os valores de precipitação e de erosividade para o período da seca (abril-setembro), para o período chuvoso (outubro-março) e para o total anual.

Os valores de precipitação variaram para o período da seca de 331 a 466mm, ou seja de 24,3 a 32,9% da precipitação anual, indicando que a região tem inverno com baixa precipitação. A erosividade para esse período variou de 1039 a 1625 MJ.mm/ha.h, ou seja de 15,3 a 25,4% do total anual, indicando que neste período as chuvas são pouco erosivas.

Para o período chuvoso, a precipitação variou de 822 a 1135mm, ou seja de 67,1 a 75,7% do total anual, indicando um alto índice pluviométrico para esses meses. A erosividade variou de 4733 a 6081 MJ.mm/ha.h, ou seja de 74,6 a 84,7% do total anual, indicando um alto potencial erosivo das chuvas neste período.

Anualmente na região ocorre uma precipitação variando de 1239 a 1546 mm e a erosividade de 6003 a 7281 MJ.mm/ha.h, sendo que os meses de dezembro, janeiro e fevereiro são os mais críticos devendo-se utilizar práticas conservacionistas que deem uma boa cobertura vegetal do solo à acão das gotas de chuva, que aumentem a infiltração de água no solo reduzindo o escoamento superficial.

Quadro 1. Totais pluviais médios semestrais, anual e erosividade, na região do médio Paranapanema-SP.

				Período			Período		ANO		
local	cód.	`	seco	abril	set	chuvoso		out	março	Total	Total
município	Posto	ppt	%	eros	%	ppt	%	eros	%	ppt	eros
Botucatu	D5-019	363	24,3	1096	15,3	1131	75,7	6081	84,7	1494	7177
Botucatu	D5-029	384	27,4	1256	18,9	1014	72,5	5383	81,1	1399	6636
Itatinga	D5-040	392	29,1	1316	20,7	954	70,9	5031	79,3	1346	6347
Agudos	D5-041	370	26,7	1187	17,8	1014	73,3	5465	82,1	1384	6653
S. Manoel	D5-047	389	25,7	1205	16,9	1125	74,3	5941	83,1	1514	7146
Águas S.Barb	D6-006	403	28,9	1343	20,5	990	71,1	5204	79,5	1393	6547
Ourinhos	D6-011	398	28,5	1308	19,9	998	71,5	5262	80,1	1396	6570
Garça	D6-018	377	25,4	1172	16,5	1108	74,6	5942	83,5	1485	7114
Cabralia Pta	D6-021	348	25,8	1108	16,9	1001	74,3	5455	83,1	1348	6564
Marilia	D6-025	388	25,5	1213	16,7	1135	74,5	6067	83,3	1523	7281
S. Cruz R. Pardo	D6-035	400	28,6	1324	20,1	998	71,4	5256	79,9	1398	6580
Galia	D6-084	357	26,0	1145	17,3	1017	74,0	5485	82,7	1375	6630
Ibirarema	D7-012	413	29,0	1382	20,8	1009	71,0	5273	79,2	1422	6655
Candido Mota	D7-031	418	29,5	1402	21,2	998	70,5	5197	78,7	1416	6600
Quintana	D7-033	331	24,3	1039	15,5	1030	75,7	5670	84,5	1361	6709
Rancharia	D7-036	354	26,9	1162	18,2	963	73,1	5215	81,8	1317	6377
Paraguaçu Pta	D7-043	376	27,2	1279	18,8	1007	72,8	5539	81,2	1384	6819
Echaporã	D7-046	373	25,9	1185	17,1	1068	74,1	5743	82,9	1441	6928
Iepê	D8-013	466	30,3	1559	22,1	1074	69,7	5482	77,9	1540	7041
Martinópolis	D8-041	347	28,0	1171	19,4	891	71,9	4851	80,6	1239	6022
Avaré	E5-014	436	29,5	1448	21,2	1043	70,5	5384	78,8	1479	6832
Itapetininga	E5-015	383	28,5	1271	19,9	961	71,5	5117	80,1	1344	6389
Bofete	E5-016	409	26,8	1304	18,2	1115	73,2	5854	81,8	1524	7158
Angatuba	E5-017	394	29,0	1319	20,5	964	71,0	5101	79,5	1358	6420
Angatuba	E5-019	419	30,5	1440	22,5	954	69,5	4958	77,5	1372	6397
Tatui	E5-023	377	27,9	1242	19,3	974	72,1	5195	80,7	1351	6437
Sarutaiá	E6-002	436	29,8	1447	21,4	1030	70,3	5328	78,6	1465	6775
Xavantes	E6-003	417	29,6	1396	21,2	993	70,4	5190	78,8	1410	6586
Pirajú	E6-006	368	29,4	1270	21,2	882	70,6	4733	78,8	1250	6003
Ipaussú	E6-007	455	29,8	1504	21,5	1074	70,2	5507	78,5	1529	7011
Itai	E6-022	457	32,9	1625	25,4	934	67,1	4769	74,6	1391	6394
Cesqueira Cesar	E6-30	406	29,2	1362	20,9	985	70,8	5168	79,1	1391	6531
Cambará		411	29,6	1383	21,3	979	70,4	5105	78,7	1390	6488
máximo		466	32,9	1625	25,4	1135	75,7	6081	84,7	1540	7281
mínimo		331	24,3	1039	15,3	882	67,1	4733	74,6	1239	6003

CONCLUSÕES

A utilização de dados pluviométricos previamente tabulados permitiu a aplicação de um modelo de cálculo de erosividade, de maneira simples e ágil, que é um dos fatores de predição de perdas de solo utilizado no modelo da Equação Universal de Perda de Solo de Wischmeir e Smith (1978) adaptada para o Estado de São Paulo por BERTONI e LOMBARDI Neto (1990).

O sistema de informação geográfica IDRISI associado com o método de interpolação do programa SURFACE possibilitaram a obtenção de bons resultados quanto a espacialização dos dados de erosividade e seu mapeamento aem vários níveis: mensal, anual ou por período.

BIBLIOGRAFIA

- BERTONI, J., LOMBARDI NETO, F. Conservação do solo. São Paulo, Ícone, 2ªed.. 1990. 355p.
- LOMBARDI NETO, F., MOLDENHAUER, W.C. Erosividade da chuva: sua distribuição e relação com as perdas de solo em Campinas (SP). Bragantia, Campinas, 51(2):189-196; 1992.
- VIEIRA, R. S. et al. Geostatistical theory and applications to variability of some agronomical properties. Hilgardia, Berkley, 1983, (51), 3: p. 1-75.
- VIEIRA, R. S. Uso da geoestatística, parte I, Curso de especialização em conservação de solo, SCS-IAC, 1995, publicação inédita.
- WISCHMEIER, W.H., SMITH. DD. Predicting rainfall erosion losses: a guide planning. Washington, DC, USDA, 1978. 58p. (handbook 537)
- WILLIAMS, J.R., DYKE, P.T. & JONES, C.A. EPIC: a model for assessing the effects of soil productivity. Proceedings of Symposium on Chemical Transpor. Ft. Collins, Colorado, 1982. 75p.