BALANÇO HÍDRICO DE SOLO CULTIVADO COM VIDEIRA.

Jaqueline Ávila **NETTO**¹, Pedro Vieira de **AZEVEDO**, Bernardo Barbosa da **SILVA**², José Monteiro **SOARES**, Antônio Heriberto de **CASTRO TEIXEIRA**³.

RESUMO

A parte experimental desta pesquisa foi conduzida no Campo Experimental de Bebedouro (Embrapa Semi-Árido), no município de Petrolina-PE (Lat. :09°00'S, Log.:40°22'W e Alt.: 365,5m), durante o período de maio a agosto de 1996. O presente trabalho objetivou a determinação do balanço hídrico do solo ao longo do ciclo vegetativo da videira (Vitis Vinifera L.), variedade Itália. A videira com 5 anos de idade, foi conduzida num sistema de latada, a dois metros acima da superfície do solo, num espaçamento de 4m entre fileiras por 2m entre plantas, com 7 plantas pôr fileira e 3 fileiras pôr parcela, correspondendo a uma área pôr parcela de 168m² e 16 parcelas, perfazendo uma área experimental de 2.688m², localizada numa área total de 13.000m² O sistema de irrigação utilizado foi do tipo gotejamento em linha, com emissores espaçados de 1m, vazão de 4 l/h e uma linha lateral pôr fileira de plantas. As leituras dos tensiômetros foram feitas diariamente sempre antes das irrigações e a área foliar foi obtida semanalmente. Os resultados obtidos permitiram concluir que o método do balanço de água no solo apresentou valores bastante consistentes da evapotranspiração da cultura (ET_c). Houve contribuição do lençol freático para a zona radicular nos subperíodos de chumbinho e desenvolvimento das bagas.. O consumo hídrico diário da cultura aumentou de 2,0mm/dia no início do subperíodo de brotação das gemas (07 a 12/05/96) para 4,3mm/dia no final do subperíodo de chumbinho (01 a 07/07/96) e totalizou 333,6mm no ciclo vegetativo.

Palavras-chave: evapotranspiração, drenagem profunda, condutividade hidráulica, consumo hídrico.

¹CPTEC/INPE, Rod. Presidente Dutra, Km 40, 12630-000, Cachoeira Paulista-SP, E-mail: jaque@cptec.inpe.br.

² DCA/CCT/UFPB, Av. Aprígio Veloso, 882, 58109-970, Campina Grande-PB, E-mail: pvieira@dca.ufpb.br.

³ MSc. em Eng. de Irrigação e Meteorologia, respectivamente, Embrapa Semi-Árido, 56300-000, Petrolina-PE.

INTRODUÇÃO

Na região do submédio São Francisco, a área explorada com a cultura da videira evoluiu de 2.902ha em 1992 para 4.847ha em 1996, apresentando uma taxa média anual de crescimento, de 16,76% (Cerdan et al., 1997). Em 1992 foram produzidos 64 mil toneladas, passando para 113 mil toneladas em 1996, cujo preço médio no período 1980-1993 oscilou em torno de US\$ 1,227 por tonelada (Gonçalves et al., 1996), o que corresponde a um volume de recursos gerados de aproximadamente 138 milhões de dólares. No estado de Pernambuco, com temperaturas médias diárias superiores a 24°C, redução pouco significativa dos valores térmicos no inverno e um decréscimo brusco da precipitação pluvial do litoral para o interior, as microregiões de Petrolina, Itaparica, Sertão do Moxotó, Salgueiro e Araripina, em função das disponibilidades térmica e hídrica, apresentam as melhores condições de cultivo para a videira irrigada (Castro Teixeira e Azevedo, 1996).

O consumo de água da videira é mínimo até a floração; da floração à fecundação consome cerca de 10% do total necessário; da fecundação ao início da maturação, o consumo é de aproximadamente 43% e do início da maturação até a maturação completa, o consumo é de 45%, podendo-se considerar que, em geral, o consumo hídrico de uma planta varia entre 2,5 a 4,0mm/dia durante o ciclo vegetativo (Mota et al., 1974). Se há deficiência hídrica durante o período inicial de crescimento e na maturação das bagas, ocorrerá redução no tamanho dos frutos e atraso no seu amadurecimento, afetando a coloração e favorecendo a queima queima dos frutos pela ação da radiação solar. Após o amadurecimento dos frutos, o consumo hídrico das plantas é mínimo (Vaadia e Kasimatis, 1961, citado por Winkler et al., 1974). O balanço de água no solo é o método mais empregado na programação da irrigação, pois contabiliza a precipitação e a irrigação frente à evaporação, considerando a disponibilidade de água no solo para as culturas e proporciona um adequado planejamento do manejo da irrigação.

O presente trabalho objetivou a determinação do balanço hídrico do solo, ao longo do ciclo vegetativo da videira variedade Itália, visando a obtenção das necessidades hídricas da cultura.

MATERIAL E MÉTODOS

O experimento de campo foi conduzido na Estação Experimental de Bebedouro, pertencente a (EMBRAPA/Semi-Árido), no município de Petrolina-PE, latitude: 09°00'S, longitude: 40°22'W e altitude: 365,5m, na região semi-árida da Bacia do submédio São Francisco, numa área experimental de 2.668m².

O clima, segundo Hargreaves (1974) e Reddy e Amorim Neto (1993) classifica-se como muito árido, com estação chuvosa limitada aos meses de janeiro a abril, de forma que as precipitações são escassas com distribuição irregular e sua média anual em torno de 400mm. A cultura em estudo foi a videira (*Vitis Vinifera* L.), variedade Itália, com cinco anos de idade, conduzida no sistema de latada a 2m de altura, numa área experimental de 2.688m². O sistema de irrigação utilizado foi do tipo gotejamento em linha, com freqüência de irrigação diária. O experimento foi conduzido no período não chuvoso (maio a agosto de 1996).

03 (três) baterias de tensiômetros foram instalados nas profundidades de 20, 40, 60, 80, 100 e 120cm. Os dados de área foliar foram obtidos semanalmente, empregando-se um analisador do dossel foliar, modelo LI-2000, da LI-COR. Para a determinação do balanço de água no solo utilizouse a formulação proposta pôr Fontana et al. (1992):

$$ETc = Pr + I \pm Dp \pm \Delta A - R \tag{1}$$

onde: ETc é a evapotranspiração da cultura (mm); Pr é a precipitação pluviométrica (mm); I é a irrigação (mm); ΔA é a variação no armazenamento de água no perfil do solo (mm); R é o escoamento superficial e Dp é a drenagem profunda (mm). No presente estudo, a precipitação pluviométrica foi medida através de pluviômetro, o escoamento superficial (R) foi considerado nulo, pois, no período do experimento, não houve chuvas com precipitações superiores à velocidade de infiltração básica do solo, e o sistema de irrigação utilizado (gotejamento) não ocasiona escoamento superficial no campo. A variação no armazenamento de água no perfil do solo (ΔA) foi determinada com base nas leituras dos tensiômetros. A drenagem profunda foi determinada pela formulação proposta pôr Reichardt (1978):

$$Dp = -\left[\bar{k}(\theta) \frac{\partial \psi}{\partial Z}\right]$$
 (2)

onde Dp corresponde ao fluxo ascendente ou descendente de água no perfil do solo; $k(\theta)$ a condutividade hidráulica do solo; $\partial \psi$ é a variação de carga hidráulica; ∂Z é a camada do solo estudada e $\frac{\mathbf{T} \mathbf{y}}{\mathbf{T} \mathbf{Z}}$ é o gradiente hidráulico, o qual foi obtido utilizando-se o potencial hidráulico dos tensiômetros a 80 e 120cm, considerando-se apenas o potencial matricial, segundo a metodologia proposta pôr Libardi, 1995.

A variação do armazenamento de água no solo durante os períodos de tempo considerados, foi obtida pela expressão:

$$\Delta A = \Delta A_{+} - \Delta A_{+-1} \tag{5}$$

onde: ΔA_t e ΔA_{t-1} são os armazenamentos de água no perfil do solo, nos instantes t e t-1, respectivamente.

RESULTADOS E DISCUSSÃO

Os valores das componentes do balanço de água no solo foram determinados para o período de 07/05 a 11/08/96, totalizando 96 dias divididos em 14 períodos semanas (Tabela 1). Pode-se verificar que houve perda pôr percolação profunda nos subperíodos de brotação das gemas (07 a 19/05) e maturação (15/07 a 11/08/96), enquanto que nos subperíodos de floração, chumbinho e desenvolvimento das bagas (20/05 a 14/07/96), houve contribuição do lençol freático para dentro da camada de solo com a maior parte do sistema radicular da cultura (fluxo ascendente). Tal contribuição é comum em locais onde o lençol freático situa-se próximo da superfície. A maior contribuição do lençol freático foi observada no período semanal (10 a 16/06/96) do subperíodo de desenvolvimento da baga, com um valor da ordem de 1,13mm/dia (7,9mm/semana), uma vez que a lâmina de água aplicada pela irrigação não foi suficiente para atender à evapotranspiração da cultura. Medeiros (1989), trabalhando com milho determinou um fluxo ascendente máximo da ordem de 2mm/dia na fase de floração.

A Tabela 1 indica ainda que, no início do ciclo (07 a 19/05/96), quando a videira se encontrava na fase de brotação das gemas, a drenagem profunda atingiu 23,07% do total de água perdida. No período de 20/05 a 14/07 (chumbinho e desenvolvimento da baga), correspondente ao período de maior desenvolvimento vegetativo (maior aumento do índice da área foliar - IAF da videira), a contribuição do lençol freático foi de 16,78% do total de água que penetrou no perfil do solo pela irrigação mais o fluxo capilar do lençol freático. De 15/07 a 11/08, período que corresponde ao início da queda das folhas e maturação dos frutos, a perda pôr drenagem profunda atingiu 12,03%, enquanto que a evapotranspiração da cultura foi de 87,97%. A lâmina total ascendente do lençol freático (33,1mm) representou 10,67% da lâmina total aplicada pelo sistema de irrigação, enquanto que a lâmina de água perdida pôr percolação profunda (24,8mm) foi da ordem de 8, 01%. Com base nisto, pode-se supor que os valores do coeficiente de cultura utilizados nos subperíodos de chumbinho e desenvolvimento das bagas no cálculo da lâmina de água aplicada na irrigação, subestimaram às necessidades de água das plantas nesses subperíodos.

Tabela 1 - Valores das componentes do balanço de água no solo para o período de observações (07/05 a 11/08/96), na videira variedade itália, em Petrolina-PE.

PERÍODO	ΔA (mm)	I (mm)	D _p (mm)	ET _c (mm)
07/05/96 a 12/05/96	-6,62	10,13	2,70	14,05
12 a 19/05/96	-14,65	12,24	7,84	19,05
20 a 26/05/96	-9,60	16,20	-1,65	27,45
27 a 02/06/96	-2,61	15,00	-2,07	19,68
03 a 09/06/96	-2,01	15,98	-7,67	26,66
10 a 16/06/96	-1,40	16,50	-7,88	25,78
17 a 23/06/96	-4,48	17,34	-5,67	27,49
24 a 30/06/96	-7,06	18,06	-1,92	27,04
01 a 07/07/96	-4,15	21,98	-4,17	30,30
08 a 14/07/96	-2,75	24,18	-2,03	28,96
15 a 21/07/96	-0,63	27,48	2,80	25,31
22 a 28/07/96	0,22	22,86	1,47	21,17
29 a 04/08/96	3,44	26,28	2,10	20,74
05 a 11/08/96	-0,17	27,66	7,91	19,92
Total	-52,47	271,89	-8,24	332,80

ΔA - Variação no armazenamento; I - Irrigação e ET_c - Evapotranspiração da cultura.

CONCLUSÕES

Os resultados obtidos neste trabalho permitem concluir que:

- 1 Os valores máximos de índice de área foliar da videira variedade Itália, da ordem de 1,2, ocorrem no estádio de desenvolvimento das bagas;
- 2. No solo da Estação Experimental de Bebedouro e época do experimento (maio a agosto), o fluxo capilar ascendente do lençol freático para a zona radicular da videira é mais evidenciado nos subperíodos de chumbinho e desenvolvimento das bagas da videira;
- 3 O método do balanço de água no solo mostrou-se mais consistente na determinação da evapotranspiração da videira variedade Itália em comparação com o método do balanço de energia baseado na razão de Bowen;
- 8 Objetivando a comparação com o método do balanço de água no solo, recomenda-se a repetição da presente pesquisa, utilizando-se, para determinar a evapotranspiração da cultura, medições lisímétricas ou o método do fluxo de seiva no caule.

REFERÊNCIAS BIBLIOGRÁFICAS

- CASTRO TEIXEIRA, A. H. de e AZEVEDO, P.V. de.. Zoneamento agroclimático para a videira européia no estado de Pernambuco. Brasil. **Revista Brasileira de Agrometeorologia.** v.4., n.1, p.139-145, 1996.
- CERDAN, C; SANTIER, D; BENTZEN, M. C.P et al. O agronegócio da uva no Submédio São Francisco. **Relatório de pesquisa**, Convênio Sudene, agosto 1997.
- FONTANA, D.C. Determinação da evapotranspiração. In: BERGAMASCHI, H. (Coord.). **Agrometeorologia Aplicada à Irrigação**. Porto Alegre: Ed. da Universidade / UFRGS. 1992. Cap 4, p.48-61.

- GONÇALVES, J. S.; AMARO, A. A.; MAIA, M. L.; SOUZA, S. A. M. Estrutura de produto e de mercado da uva de mesa brasileira. **Agricultura em São Paulo,** v.43, n.1, P.43-93, 1996.
- HARGREAVES, G.H. Climate Zonning for agricultural prodution in Northeast, Brasil.Logan, Utah State university, 6p, 1974.
- REICHARDT, K. **Processos de transferência no sistema solo-planta-atmosfera**. Fundação Cargil.1985.466p.
- LIBARDI, P. L. **Dinânica da água no solo**. Depto. de física e meteorologia (ESALQ/USP). 1^a edição, Piracicaba, SP, p 359-430. 1995.
- MEDEIROS, H. T. de. Função de produção de nitrogênio e água na cultura de milho irrigado no município de SEMÉ-PB. Tese de mestrado. Campina Grande-PB, 1989. 92p
- MOTA, F. S. da; BEIRSDORF, M. I. C.; ACOSTA, M. J. C.; et al. Zoneamento climático do Rio Grande do Sul para a videira européia. In.: CONFERÊNCIA LATINO AMERICANA DEL VINO Y LA UVA, 6, Caxias do Sul, RS. **Ata das reuniões**..., Porto Alegre, RS, OLAVU, 1974, .
- REEDY, S. J. e AMORIM NETO, M. da S. **Dados de precipitação**, **evapotranspiração potencial**, radiação solar global de alguns locais e classificação climática do Nordeste do Brasil. Petrolina-PE, EMBRAPA/CPATSA, 1993. 280p.
- WINKLER, A. J. et al. **General Viticulture**. 2d. Ed. Berkeley: University of California Press, 1974.710p.il.