ESTIMATIVAS DE RENDIMENTO DE SOJA, BASEADAS NA TENDÊNCIA TECNOLOGICA E NAS VARIÁVEIS CLIMÁTICAS

SHERRY CHOU CHEN

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPq
INSTITUTO DE PESQUISAS ESPACIAIS - INPE
CAIXA POSTAL 515 - 12.200 - SÃO JOSÉ DOS CAMPOS - SP

INTRODUÇÃO

A mais importante informação para os responsáveis pelo comércio de produtos agrícolas é ter dados precisos de produção e em tempo hábil. Uma estimativa de produção antecipada pode ser determinada se o rendimento é conhecido. A principal causa da varia
ção de produção de estação a estação é devido a flutuações climáticas. Pesquisas têm sido conduzidas com o intuito de prever o rendimento baseado em dados históricos de clima (3.4.5). No desenvolvimento de um modelo agrometeorológico, com a finalidade de esti
mar rendimento, deve-se relacionar o rendimento da cultura com as variáveis meteorológica usuais que possuem dados históricos disponíveis e que são altamente correlacionadas. Este pré-requisito é necessário para o uso de um modelo de potencial de uso para aplicar operacionalmente as relações clima rendimento. A metodologia de regressão para prever rendimento de culturas, baseada em dados históricos de clima e rendimento, tem sido amplamente utilizada pelo LACIE (Large Area Crop Inventory Experiment). O rendimen
to previsto foi combinado com a área estimada pelo satélite LANDSAT para fornecer as in
formações de produção (4).

O objetivo deste estudo foi explicar a variação de rendimento da soja, no per
íodo de 1956 a 1979 na DIRA-Ribeirão Preto, usando fatores meteorológicos e de tendênci
teclimática. A DIRA-Ribeirão Preto foi escolhida não somente devido às práticas de cultivo, clima, topografia, tipo de solo homogêneo, mas também porque foi a área teste para um estudo de inventário de culturas, utilizando dados do LANDSAT, realizado no INPE (1).

MATERIAL E MÉTODOS

A soja, normalmente, é plantada no período de novembro a dezembro e colhida em abril e maio na DIRA-Ribeirão Preto. Dados meteorológicos mensais dos anos anteriores foram fornecidos pelo Serviço Meteorológico do Ministério da Agricultura. Dados de ren
dimento para soja, desde 1956, foram obtidos a partir das estimativas finais de produ
ção e da área plantada, fornecidos pelo Instituto de Economia Agrícola (IEA).

Para a construção do modelo, análises de correlações foram feitas, inicialmen
te, com dados históricos de rendimento e os desvios dos dados meteorológicos mensais normais (média de 1957 a 1979), tais como, evaporação total, umidade relativa, precipita
ção total e temperatura média. O rendimento foi também correlacionado com radiação solar, que foi estimada usando-se a equação de Cervellini et alii (2) e com as tempera
turas máximas e mínimas diárias de cada mês. Além de utilizar os desvios dos dados normais, mencionados acima, foram usados também seus valores absolutos para análise de correlação; isto porque aqueles valores extremos, positivos ou negativos, que desviavam das normais, podem prejudicar a cultura na mesma escala. Deste modo, usando-se os "va
tores absolutos dos desvios" para análise pode-se realizar a relação entre o rendimento
da cultura e os fatores climáticos. Todas as contribuições para rendimento de soja devem a fatores não-climáticos tais como, adubação, melhoramento, controle de pragas, doenças e ervas daninhas, mecanização, etc. foram considerados como sendo uma variável "dummy", designada tendência tecnológica. Para analisar esta variável "dummy", codificou-se cada ano por um número, assim 1956 recebeu o número 1, 1957, 2, ..., até 1979, 24. As variáveis que correlacionaram significativamente com o rendimento foram então utilizadas como componentes potenciais para explicar a variação do rendimento. Utilizou-se o programa de regressão múltipla "stepwise" do SPSS (Statistical Package for Social Science) que seleciona as variáveis, de acordo com sua contribuição em relação à variação do rendimento. Este programa adiciona, de cada vez, uma variável à regressão e, ao mesmo tempo, calcula a sua importância na flutuação do rendimento.

RESULTADOS E DISCUSSÃO

Entre as sessenta e sete variáveis independentes analisadas, dez foram significativamente correlacionadas com o rendimento. Os fatores climáticos que apresentaram correlação significante foram tanto as temperaturas máximas diurnas como os valores absolutos dos fatores climáticos que desviam das suas normais. Estes resultados indicam que a temperatura máxima diária foi melhor correlacionada com rendimento do que a temperatura média mensal; b) os termos lineares e quadráticos do desvio da normal das temperaturas médias mensais e precipitação total, usados no modelo de Thompson para soja, não foram aplicáveis na DIRA-Ribeirão Preto; c) a hipótese de Runge e Odell (4), que uma polegada de precipitação total acima ou abaixo da normal e 10C acima ou abaixo da temperatura média normal teria um efeito oposto no rendimento da soja, não foi confirmada neste estudo. Por outro lado, chegou-se à conclusão de que os desvios dos fatores climáticos normais, tanto positivo como negativo, prejudicam igualmente a produção. Os dez dez variáveis foram, então, consideradas como indicadores potenciais do rendimento na análise de regressão. O resultado resumido da análise de regressão "stepwise" é mostrado na Tabela I. Examinando-se a mudança de R² em cada passo, nota-se que a adição de qualquer variável além da VAR73, diferença absoluta da precipitação total em dezembro em relação ao normal, melhorou insignificante o ajustamento da curva de regressão. Deste modo, somente quatro variáveis foram selecionadas no modelo para estimar rendimento, baseado em dados Climáticos e Tecnológicos (RCT modelo). A tendência tecnológica (VAR32) que apresentou a mais alta correlação com o rendimento de soja foi a primeira variável selecionada que explicou 53,39% da variação do rendimento de 1956 a 1979. Se o melhoramento em tecnologia continuar com a mesma grandeza, pode-se esperar um incremento de 28,96 kg/ha no rendimento anual sob condições climáticas normais. A adição à equação da VAR98, temperatura máxima diária de fevereiro, aumentou mais 16,86% sobre R². As figuras 1 e 2 mostram a relação do rendimento com a temperatura máxima diária de fevereiro. Os dados da temperatura máxima diária são melhores indicadores de alta temperatura do que a média mensal. Esta relação entre alta temperatura de fevereiro e baixo rendimento de soja pode ser explicada pelo fato de que durante o mês de fevereiro a maioria das culturas estava na floração ou no estágio inicial de frutificação. A alta temperatura durante estes estágios provocou a queda das flores ou dos frutos jovens e, consequentemente, a diminuição do rendimento (6). A inclusão da VAR83 e VAR73, respectivamente, diferenças absolutas da temperatura média de novembro e precipitação total de dezembro com suas normais, contribuíram com um aumento de 8,4% no valor de R² da equação. O teste de significância da regressão múltipla e seus coeficientes de regressão parcial do modelo RCT é apresentado na Tabela II. A equação

\[y = 1242,35 + 22,46 \, \text{VAR32} - 69,58 \, \text{VAR98} - 100,55 \, \text{VAR83} - 0,74 \, \text{VAR73} \]

tem valor de R² e erro padrão de 0,8335 e +120,22 kg/ha, respectivamente. É claro que a partir da magnitude do valor de F, todos os coeficientes da equação são estatisticamente
mente significantes. As outras seis variáveis climáticas não foram incluídas na equação devido aos seus baixos valores de R. Embora quase 17% da variação do rendimento não tenha sido esclarecido, a equação selecionada explica satisfatoriamente a flutuação do rendimento de soja em 1956 a 1979 (Fig. 2). A maior diferença entre as estimativas do IEA e o modelo de RCT foi encontrada para o ano agrícola de 78/79. As condições favoráveis de clima, aliadas ao plantio de uma nova variedade altamente produtiva (variada Paraná), propiciou um rendimento recorde de 2098,84 kg/ha naquele ano (78/79). O uso contínuo dessa variedade deverá introduzir, no modelo RCT, novas variáveis de tendência e fatores climáticos, caso a variedade Paraná seja influenciada por esses elementos. A simplicidade do modelo de regressão, que utiliza dados meteorológicos como entrada, fornece informações sobre o rendimento da soja no início de março, ou seja, mais de um mês antes da colheita. Esta informação pode ser muito útil às entidades que trabalham na comercialização do produto.

LITERATURA CONSULTADA

TABELA I
SUMÁRIO DA ANÁLISE DE REGRESSÃO MÚLTIPLA

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>CÓDIGO</th>
<th>R²</th>
<th>AUMENTO DE R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT</td>
<td>32</td>
<td>0,5508</td>
<td>-</td>
</tr>
<tr>
<td>TMA₃₈₋M</td>
<td>98</td>
<td>0,7494</td>
<td>0,1686</td>
</tr>
<tr>
<td>ABS(T₅₋M)</td>
<td>63</td>
<td>0,0995</td>
<td>0,0601</td>
</tr>
<tr>
<td>ABS(P₅₋M)</td>
<td>73</td>
<td>0,8335</td>
<td>0,0240</td>
</tr>
<tr>
<td>ABS(U₅₋M)</td>
<td>63</td>
<td>0,8418</td>
<td>0,0083</td>
</tr>
<tr>
<td>TMA₉₋M</td>
<td>94</td>
<td>0,8429</td>
<td>0,0011</td>
</tr>
<tr>
<td>ABS(RS₁₋M)</td>
<td>41</td>
<td>0,8447</td>
<td>0,0018</td>
</tr>
<tr>
<td>ABS(RS₀₋M)</td>
<td>35</td>
<td>0,8464</td>
<td>0,0017</td>
</tr>
<tr>
<td>TMA₆₋M</td>
<td>97</td>
<td>0,8468</td>
<td>0,0004</td>
</tr>
<tr>
<td>TMA₉₋M</td>
<td>96</td>
<td>0,8471</td>
<td>0,0003</td>
</tr>
</tbody>
</table>

* Subscritos indicam o mês. TT = tendência tecnológica, TMA=Temp.max. diária, ABS=valor absoluto, T=Temp. media, P=precipitação total, UR=umidade relativa, RS=radiação solar, M=corresponde à média das observações de 1956 a 1979 para cada elemento.
TABELA II
COEFICIENTES DE REGRESSÃO MÚLTIPLA PARA O MODELO DA SOJA

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>MÉDIAS</th>
<th>COEFICIENTE</th>
<th>VALOR DE F</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT</td>
<td>-</td>
<td>22,46</td>
<td>35,27</td>
</tr>
<tr>
<td>TMAf-M</td>
<td>33,45</td>
<td>-69,58</td>
<td>14,77</td>
</tr>
<tr>
<td>ABS(TN-M)</td>
<td>23,00</td>
<td>-100,55</td>
<td>4,83</td>
</tr>
<tr>
<td>ABS(PD-M)</td>
<td>270,71</td>
<td>-0,74</td>
<td>2,75</td>
</tr>
<tr>
<td>Constante</td>
<td></td>
<td>1242,35</td>
<td></td>
</tr>
</tbody>
</table>

Fig.1 - Temperatura máxima diária do mês de fevereiro de 1956 a 1979 (DIRA-RP).

Fig. 2 - Estimativa do rendimento de soja para a DIRA de Ribeirão Preto (1957-1979).