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ABSTRACT

Artificial Neural Networks (ANN) are applied to estimate turbulent fluxes such as latent heat

(LE) and sensible heat (H) from slow response and fast response sampled micrometeorological data

obtained in ARME (Amazon Forest Micrometeorology Experiment) Project. This was performed

because turbulent fluxes are difficult to measure directly under adverse conditions, in contrast to

some other micrometeorological variables such as slow response vertical profile data. This paper

briefly describes the basic concept of ANN, shows the network modeling and training procedure

and presents some preliminary estimated results which are validated against measured data. To

estimate LE, 72 continuously sampled one hour mean data are used to train the ANN and 41

similarly obtained data to test the validity of the proposed method. The mean relative error of the

estimated LE value is 0.27 with a standard deviation of 0.21. Bowen ratios from the measured and

estimated LE and H values are calculated too, and match well among them even during time

intervals in which Bowen ratio changes of sign.

INTRODUCTION

Turbulent flows above and inside forest environments are fundamental processes to

exchange momentum, heat, water vapour and trace-gases between the atmosphere and the

biologically active canopy (Shuttleworth, 1989). The better understanding of such a

micrometeorological processes was one of the main goals of the Anglo-Brazilian Experiment ARME

(Shuttleworth et al., 1984) carried out in the Ducke Reserve Forest (2o 57'S: 59o 57'W), a site situated

26 km far from Manaus, Amazonas (Sá et al., 1988). In spite of the lengthy data bases provided by

four intensive ARME's field campaigns, there are some intervals of missing flux data. This is

because the fast response turbulent fluctuations  measuring  system  used   in   ARME,   the

HYDRA  device  (Shuttleworth et al., 1988),
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was very sensitive to some adverse experimental conditions, such as rainy ones. One way to

overcome this problem is to estimate turbulent fluxes by some kind of flux-gradient or flux-profile

parameterizations provided by the Monin-Obukhov Similarity Theory for the atmospheric  surface

boundary layer (Arya, 1988). But authors such as Raupach and Thom (1981) argued that such

relationships probably do not hold next very complex surfaces as forests. As recently shown by

Abareshi and Schuepp (1998), Artificial Neural Networks (ANN) could represent a useful tool to

solve this interesting kind of problem. ANN is an artificial method to simulate the human’s

information memorizing and processing activities. Numerous studies have shown that ANN can be

successfully applied to meteorological data. It has been applied to forecasting various time series,

and comparing with forecasts by autoregressive models (Elsner and Tsonis, 1992); El Niño seasonal

climate forecasting (Derr and Slutz, 1994); nonlinear prediction of turbulent signals from data

measured above Amazon Forest and Pasture (Weigang et al., 1995); Arctic sea ice and sea-level

pressure (Hsieh and Tang, 1998); ambient air temperature time series and prediction (Mihalakakou et

al., 1998); and data analysis in meteorology and oceanography (Hsieh and Tang, 1998).

      The objective of this study is 1) to design a suitable ANN model to estimate LE and H; 2) to

replace missing LE and H using well trained ANN, thus creating a continuous data set; 3) to study

the sensitivity of the ANN model to different input variable sets. This paper describes the basic

concept of ANN, shows the network modeling and training procedure and reports preliminary

results.

MATERIAL AND METHODS

      The Amazon Region Micrometeorological Experiment (ARME) data were collected using a 45

m scaffolding tower located in the Ducke Reserve Forest site (2o 57’ S, 59o 57’ W) 26 km northeast

of Manaus, Amazon, Brazil from 1983 to 1985 ( Sá et al., 1988; Viswanadham et al, 1990). The

latent and sensible heat fluxes (LE and H) were measured hourly in a way which is explained in

Shuttleworth et al. (1984). Temperature, humidity, wind and radiation data were originally measured

over 20-min intervals, and after were smoothed into hourly mean values to match with the LE and H

hourly measured data. There are 963 available micrometeorological data runs to estimate LE, and

1124 ones to estimate H. However, there are only a few days with a continuous 24-hour recorded

data set to use in learning process, which converts training Neural Networks a difficult task.  The

longest sequence of data was collected from 20, 21, 22, 23, 24, 25 and 26 August of 1984.  Figure 1

shows humidity data from these days where LE is latent heat flux (W/m2), Rn net radiation (W/m2); 



∆q1 is the specific humidity vertical gradient (between the 44.66 and 41.04m levels); U  is the mean

wind velocity (at the 44m level).

Figure 1 Observed LE and other data from 20 to 26 of August of 1984

      From research of Abareshi and Schuepp (1998), the sensible heat flux H could be expressed as:

      H = f(∆T1, U, Rn, t)                                                                                               (1)

where ∆T1 = Ts – Ta; Ts is the observed radiometric surface temperature; Ta, is the air temperature;

t is time, and f is a nonlinear function which can be used to estimate H.

      Following this idea, we used ANN procedure to estimate scalars fluxes from the only

information provided by low frequency micrometeorological data. For the sensible heat flux H, we

use the same equation as (1). The latent heat flux LE can be estimated by :

      LE  = fle(Rn, ∆q1, U )                                                                                            (2)

where, ∆q1 is the specific humidity vertical gradient (between the 44.66 and 41.04m levels), fle is a

nonlinear function which can be used to estimate LE.

      To test the ability of ANN to identify relevant variables, we used the observed and estimated

Bowen ratios as an index when analyzing the results. The Bowen ratio is defined as

      β = H /LE                                                                                                                (3)

      In part of application of ANN, Backpropagation Networks (BPN) are used in this study as a

basic estimating method. Backpropagation was created by generalizing the Widrow-Hoff learning

rule to multiple-layer networks and nonlinear differentiable transfer function (Demuth and
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Beale,1997) as a way of improving neural networks procedure. The structure of  BPN for estimation

of the sensible heat flux is shown in the figure 2. BPN is composed by four layers: an input layer,

two hidden layers and an output layer. There are three neurons in input layer which are used for

input ∆T, U, and Rn information. The first hidden layer of sigmoid neurons receives the input data

and then propagate their output to another hidden layer. This hidden layer of linear neurons

computes the network output, i.e. H.

Figure 2  The structure of Backpropagation Networks to estimate H

RESULTS AND DISCUSSION

      To estimate LE and H, a suitable network needs to be configured.  The number of neurons

within the hidden layer describes the nonlinearity of the network. To avoid over-fitting numerical

problems, this number is defined after error analysis estimation. The objective is to choose the

smallest neuron number yielding accurate estimation of the searched meteorological values. The

number of the neurons within the input layer is designed according the physical models. In this

paper, two cases of networks are considered:

Table 1 Networks to estimate LE and H
Cases Inputs Output Available Data

LE_Net 1 Rn, ∆q1, U LE 963
H_Net 1 Rn, ∆T1, U H 1124

     In LE_Net 1 case, the network is constructed with three inputs: Rn, ∆q1, U and one output LE.

Using 72 data from days 20 to 23 of August of 1984, the network is trained with 1000 epochs and

the SSE is 0.0417.  The network successfully estimated the LE for 41 test data from day 23, with a

mean relative error of 0.27 and a standard deviation of 0.21 (Figure 3).



Figure 3 Estimation of LE using data from 20 to 26 of August of 1984, in case LE_Net 1
a) Estimated (.) and observed (-) LE; b) Related error; c) Correlation between estimated and

observed LE from training and test data; d) Correlation between estimated and observed LE from
test data.

      In H_Net 1 case, the network is constructed with three inputs: Rn, ∆T1, U  and one output H

where ∆T1 is the air temperature vertical gradient (between 44.66 and 41.04m levels). Using 72 data

from days 20 to 23 of August of 1984, the network is trained with 2000 epochs and the SSE is

0.0302.  The network can also estimate H for 41 test data from day 23, with a mean relative error of

0.8 and a standard deviation of 2.3. There are two points in which the relative error was higher than

9.9; if these are taken as outliers and are deleted, the mean relative error drops 0.27 with a standard

deviation of 0.23.

      Figure 4 gives the Bowen ratios from observed and estimated LE and H for 41 test data. It shows

that generally, ANN estimated LE and H well both during the day and night. The estimated Bowen

ratio follows the observed Bowen ratio even at times when the ratio switches sign, typical for the

transitional period between daytime and nighttime (at 18:00 of 08/23 and 18:00 0f 08/24). Specially,

for the data from 8:00 to 17:00, the network estimated very well. For the data from 19:00 to 23:00

and 0:00 to 5:00, the networks have little difficulty in describing the potentially complicated

nocturnal nonlinear relationships, although there does appear to be a slightly greater error between

estimated and observed values than during the day.
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Figure 4 Bowen ratio from observed (-) and estimated (- -) LE and H

CONCLUSION

            ANN can be used to estimate the latent and sensible heat fluxes with acceptable precision. The

preliminary results show the potential application of this method. Latent energy estimates exhibited

a mean relative error 0.27 and a standard deviation of 0.21 for a set of test data. Estimated Bowen

ratio matched the time course of the observed Bowen ratio well, including during the transitional

period between daytime and nighttime.  However, to decrease errors, different ANNs should be

designed to process daytime and nighttime data. Future research is using more ANN techniques to

study the sensitivity of the model to different input variable sets. The data from different

experiments from different regions should also be tested.  In addition, greater number of data points

should be employed when possible.
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