ANÁLISE DE PARÂMETROS AERODINÂMICOS PARA O FEIJOEIRO EM DUAS CONDIÇÕES DE DISPONIBILIDADE HÍDRICA

Romisio G.B. ANDRÉ¹¹, Anice GARCIA², Valdo S. MARQUES¹ & Francisca M.A. PINHEIRO¹

1. INTRODUÇÃO

Os parâmetros aerodinâmicos são muito importantes nos estudos de superfícies vegetadas, pois dão informações sobre o nível de absorção das diversas propriedades, tais como calor, vapor d'água, momentum, CO2, etc., pela superfície considerada. Os parâmetros mais usados para se obter informações indiretas sobre o comportamento das plantas no uso da água e do calor são: altura da cultura (h), deslocamento do plano zero (d), parâmetro de rugosidade (zo), resistência aerodinâmica (ra) e resistência da cobertura vegetal. Uma das maneiras de se avaliar a relação entre estes parâmetros e o crescimento vegetal é efetuar medidas no meio de culturas. Diversos autores fizeram determinações desses parâmetros para diferentes superfícies, tais como de BRUIN & MOORE (1985), para florestas, VOLPE & BRUNINNI (1990) para a cultura do milho. BAILEY & DAVIES (1981) mostraram um procedimento para cálculo da resistência aerodinâmica, em condições de estabilidade neutra e Monteith estendeu o processo para qualquer condição de estabilidade (SILVA et al., 1995). Este trabalho procura mostrar as diferenças entre os parâmetros aerodinâmicos, durante o ciclo da cultura do feijão, para duas condições de disponibilidade hídrica.

2. MATERIAL E MÉTODOS

O experimento foi conduzido durante a estação outonoinverno de 1999, na Área Experimental do Departamento de Horticultura da FCAV-UNESP - Câmpus de Jaboticabal, com latitude de 21°15'22"S, longitude de 48°18'58"W e altitude de 595 metros. O solo do local é Latossolo Roxo eutrófico. O clima (classificação de Köppen), é do tipo subtropical com inverno seco (Cwa), com precipitação média anual: 1400 mm, temperatura média anual: 22°C e umidade relativa média do ar:70%

A cultura estudada foi o feijão (*Phaseolus vulgaris* L.) cultivar IAC-Carioca. A semeadura foi realizada no dia 24/05/99. Cada parcela compreendeu uma área de 27 x 25 m, constituindo-se de 42 linhas de 25m de comprimento e espaçadas de 0,60 m entre linhas e 0,10 m entre plantas. Em cada uma das parcelas foi realizado um tratamento de irrigação, sendo que em uma parcela a cultura foi mantida sem restrição de umidade (ANE), e na outra, a cultura foi submetida a situações de estresse hídrico através da supressão da irrigação (AE).

O sistema de irrigação adotado foi o de aspersão. As taxas de irrigações, foram baseadas no cálculo da Evapotranspiração máxima (ETM), com dados de evaporação do tanque Classe A. Os valores de kc utilizados foram os obtidos por SANTOS & ANDRÉ (1992), para os diversos estádios fenológicos da cultura do feijoeiro. A temperatura e umidade relativa do ar foram obtidas com sistemas Vaisala modelo HMP35E. Os instrumentos foram montados em dois níveis, um junto do dossel vegetativo e outro a um metro acima do primeiro, permitindo-se, desta maneira, a obtenção dos gradientes de temperatura e umidade relativa. Para medida da velocidade do vento foram

utilizados dois anemômetros modelo Casela London MKIII, também montados em dois níveis, um junto ao dossel e outro 1 metro acima do dossel e um anemômetro (Met-One 014 A), a 3 metros acima do dossel, com a finalidade de se obter um perfil do vento e determinar os parâmetros aerodinâmicos da cultura: deslocamento do plano zero (d) e rugosidade (z_s). Foi utilizado o método em que d é obtido lançando-se em um gráfico ln (z-d) vs. u (z). O valor de d é aquele que lineariza perfeitamente o perfil. Como este valor é aproximado, foi utilizado, então, o método analítico (iterativo), através do perfil logaritmo do vento, aplicado a três níveis considerados z₁, z₂ e z₃, cujas velocidades do vento são u₁, u₂ e u₃, respectivamente. O correspondente valor do parâmetro de rugosidade (z_o) foi encontrado ao extrapolar-se a relação linear entre ln(z-d) e u(z) para u(z)= 0, em um determinado horário onde a atmosfera estava em estabilidade neutra (ANDRÉ, 1996).

Na parcela não estressada (ANE) o saldo de radiação foi obtido com um Saldo Radiômetro modelo Q-7 (REBS). Na parcela estressada foi utilizado o Saldo Radiômetro modelo NR-Lite (Sci.-Tec Inst). A temperatura do dossel vegetativo foi obtida com o auxílio de dois sensores de Infravermelho Everest Interscience Inc. modelo 4000-2H, um em cada parcela experimental. Os instrumentos foram instalados a 15 cm acima do dossel vegetativo da cultura, formando um ângulo de 45° com a normal. A transformação de voltagem para °C foi feita por : Y = 0,0556X – 17,778, em que Y é dado em °C e X em mV.

A resistência aerodinâmica foi obtida com base na expressão proposta por Monteith , citado por SILVA et al. (1995), válida para qualquer condição de estabilidade atmosférica:

$$r_{a} = \frac{\left\{\ln\left[(z-d)/z_{o}\right]\right\}^{2}}{k^{2}u} \left[1 - \frac{5.g.(z-d).(T_{kc} - T_{ka})}{T_{km}u^{2}}\right]$$
(1)

em que, d e z_o representam respectivamente o deslocamento do plano zero (m) e o parâmetro de rugosidade da superfície (m), u é a velocidade média do vento obtida no nível z acima do solo, (m/s), g é a aceleração da gravidade (9,8 m/s²) e $T_{\rm kc}$, $T_{\rm ka}$ e $T_{\rm km}$ representam, respectivamente, as temperaturas médias absolutas (K) do dossel da cultura, do ar e a média entre essas duas.

Para o cálculo da resistência da cobertura, numa condição de evapotranspiração potencial (r_{cp}) utilizou-se a metodologia proposta por O'TOOLE & REAL (1986), em que:

$$\overline{r}_{cp} = -\overline{r}_{ap} \left(\frac{\overline{s} + 1/b}{\gamma} + 1 \right) \tag{2}$$

em que, r_{ap} é o valor médio da resistência aerodinâmica em evapotranspiração potencial (s.m $^{-1}$):

$$\overline{r}_{ap} = \frac{\rho . c_p a}{\overline{Q} * b(\overline{s} + 1/b)} \tag{3}$$

¹ Laboratório de Engenharia e Exploração de Petróleo. UENF – Macaé – RJ. romisio@furnas.gov.br

² Faculdade de Agronomia Dr. Francisco Maeda. Ituverava – SP. anice@cade.com.br

Tabela 1. Valores de altura da cultura (h), deslocamento do plano zero (d), parâmetro de rugosidade (zo), resistências aerodinâmica (ra) e da cobertura vegetal em evapotranspiração potencial (rcp), para duas condições de disponibilidade hídrica

	Parâm.	Estádios							
ANE		DV	FL		EG		MT	médias	r ²
		21/iul	29/iul	03/ago	11/ago	17/ago	26/ago	modias	' .
	h	0.42	0.51	0.6	0.63	0.91	0.97		
	d	0,27	0,361	0,421	0,456	0,652	0,719		
	ZO	0,043	0,077	0,089	0,091	0,109	0,112		
	d /h (%)	0,65	0,71	0,7	0,72	0,72	0,74	0,71	0,99
	zo /h (%)	0,1	0,15	0,15	0,14	0,12	0,12	0,13	0.82
	ra	118,19	41,74		39,14		36,33		
	rap	22,69	19,71		19,1		25,26		
	rcp	20,96	22,89		25,66		11,72		
AE	h	0.33	0.47	0.5	0.51	0.79	0.82		
	d	0.217	0.355	0.4	0.418	0.583	0.615		
	ZO	0.065	0.075	0.084	0.079	0.101	0.122		
	d/h(%)	0.66	0.75	8.0	0.83	0.74	0.75	0.76	0.97
	zo/h(%)	0.2	0.16	0.17	0.16	0.13	0.15	0.16	0.98
	ra	29.67	20.69		23.82		16.86		

em que, a e b são os coeficientes obtidos na regressão entre (Tc-Ta) e DPV, Q^* é o saldo de radiação (W.m²), \square s é o valor médio da tangente à curva de pressão de saturação do vapor d'água em relação à temperatura do ar (kPa. °C¹1), ρ a massa específica do ar (kg.m³), c_ρ o calor específico do ar à pressão constante(J.kg¹¹. °C¹¹1) e γ a constante psicrométrica (kPa. °C¹1)

3. RESULTADOS E DISCUSSÃO

Os resultados obtidos para $h,\ d,\ z_o,\ r_a$ e $r_{cp},$ para as duas condições de disponibilidade hídrica, podem ser visualizados na Tabela 1.

De acordo com esta tabela, a correlação entre h e d é muito alta (r^2 =0,99 e r^2 = 0,97), tanto para a cultura sem restrição de umidade como aquela submetida a estresse hídrico. Para a correlação entre h e z_{\circ} encontrou-se r^2 =0,82 e r^2 =0,98 respectivamente, para as condições acima descritas. Foram encontradas as relações d = 0,71 h e z_{\circ} =0,13h, para condições de boa disponibilidade hídrica é de d = 0,76h e z_{\circ} = 0,16h para cultura submetida a estresse hídrico. Em literatura há citação dessas relação para milho, com valores de d = 0,71h e z_{\circ} = 0,20 h (VOLPE & BRUNINNI, 1990) e d = 0,70 h e z_{\circ} = 0,19 h, (ANDRÉ, 1996).

Os valores da resistência aerodinâmica são sistematicamente mais elevados para o caso da cultura mantida sem restrição de umidade, resultados observados também por JALALI-FARAHANI et al (1994) e que esses autores atribuíram à existência de umidade as diferenças entre as duas áreas de Tc-Ta usados no fator de correção de estabilidade na equação 1.

Os valores são crescentes até o enchimento de grãos, voltando a decrescer. Quanto a resistência da cobertura à evapotranspiração potencial, a mesma apresenta um comportamento crescente até o estádio de enchimento de grãos, voltando a decrescer até a maturação fisiológica. Valores crescente de rcp, também foram observados por O'TOOLE & REAL para a cultura do arroz, até o final do

enchimento de grãos.

4. CONCLUSÕES

- Os parâmetros aerodinâmicos apresentaram diferenças entre a ANE e a AE com relações: d = 0.71 h e $z_0 = 0.13 \text{h e}$ de d = 0.76 h e $z_0 = 0.16 \text{h}$ respectivamente.
- A resistência aerodinâmica apresentou valores maiores na ANE com valores decrescentes com o desenvolvimento da cultura

5. REFERÊNCIAS BIBLIOGRÁFICAS

- ANDRÉ, R.G.B. Um estudo dos transportes verticais de momentum, calor sensível e vapor d'água sobre superfície vegetada nos trópicos. São José dos Campos, 1981. 112p. Tese (Doutorado em Meteorologia)-INPE/MCT.
- ANDRÉ, R.G.B. Aspectos energéticos e hídricos da cultura do milho (<u>Zea mays</u> L.) na região de Jaboticabal, SP. Jaboticabal, 1996, 96 p. Tese (Livre-docência). FCAV:UNESP.
- BRUIN, H.A.R. de. MOORE, C.J. Zero plane displacement and roughness length for tall vegetation, derived from a simple mass conservation hypotesis. *Boundary-Layer Meteorol.*, Dordrecht, v.31, p.39-49, 1985.
- JALALI-FARAHANI, H.R. et al. Evaluation of resistances for bermudagrass turf crop water stress index models. *Agronomy Journal*, Madison_, v.86, n.3, p.574-81, 1994
- O'TOOLE, J.C., REAL, J.G. Estimation of aerodinamic and crop resistances from canopy temperature, *Agronomy Journal*, Madison, v.78, p.305-10,1986.
- SANTOS, R.Z., ANDRÉ, R.G.B. Consumo de água nos diferentes estádios de crescimento da cultura do feijoeiro. *Pesquisa Agropecuária Brasileira*, Brasília, v.27, n.4, p.543-8, 1992
- SILVA, B.B., et al. Quantificação do estresse hídrico em algodoeiro herbáceo com termometria infravermelha. *Rev. Bras. de Agromet.*, Santa Maria, v. 3, p.45-51, 1995.