COMPARAÇÃO DA RADIAÇÃO SOLAR GLOBAL ESTIMADA ENTRE O PERÍODO SECO E CHUVOSO PARA N.S. DAS DORES - SE.

Inajá Francisco de Sousa
Centro de Pesquisas Espaciais de Sergipe - CEPES/CODISE

RESUMO
Este trabalho teve como objetivo estimativa e análise dos coeficientes empíricos a_1 e b_1 da equação de Angstrom modificada por Prescott (1940) para o município de N. S. das Dores -Se, utilizando dados diários de radiação solar global e insolação de dois anos extremos. Os resultados obtidos foram os seguintes: para o ano considerado seco (1972), obteve-se $a_1=0,28$ e $b_1=0,35$ e para o ano chuvoso (1974) obteve-se $a_1=0,22$ e $b_1=0,35$. Para o período considerado chuvoso, compreendido entre os meses de abril a agosto, obteve-se $a_1=0,24$ e $b_1=0,38$ e para o período seco, que compreende os meses de setembro a março, $a_1=0,26$ e $b_1=0,45$. Os valores encontrados de a_1 e b_1 em todos os períodos estão de acordo com os estimados por vários autores.

INTRODUÇÃO
A nebulosidade reduz a radiação direta resultando numa dependência da reflexão sobre a elevação solar. A nível atmosférico, o principal fator limitante do saldo de radiação é a radiação solar, que varia em função da latitude, altitude, ângulo solar, cobertura de nuvens e turbidez atmosférica (Chang,1968).

A radiação solar é muito importante para as plantas, principalmente na faixa de comprimento de onda do visível, necessário para a fotossíntese, além de proporcionar vida a todos os seres vivos que habitam na terra.

MATERIAL E MÉTODO
Foram utilizados dois anos de dados diários de radiação solar global e insolação coletados na estação climatológica de N.S. das Dores-Se (Latitude=10°30’S, Longitude=37°13’W e Altitude=200m). Selecionou-se um ano considerado seco (1972) e um ano considerado chuvoso (1974). Os dados de radiação solar e insolação foram medidos em um actnógrafo modelo FUESS e em um heliógrafo Campbell-Stokes, respectivamente.

Para a determinação dos coeficientes empíricos a_1 e b_1 (dependentes do local, estação do ano e do tipo predominante de nuvens que se forma na região estudada) foi empregada a fórmula de Angstrom modificada por Prescott (1940):

$$R_s = Q_0(a_1 + b_1 \frac{n}{N}) \quad (2.1)$$

onde: Q_0 é a radiação solar incidente na ausência da atmosfera, estimada em função da latitude local, dia do ano e da constante solar e N é a insolação máxima teórica, avaliada em função da latitude e declinação do sol.

Os coeficientes empíricos foram determinados para cada ano. Em seguida, para a estação chuvosa, que compreende os meses de abril a maio e para o período seco, compreendido entre os meses de setembro a março dos dois anos.

No cálculo de Q_0 e N empregou-se as seguintes fórmulas:

$$Q_0 = \frac{1440}{\pi} \times S \left(\frac{d}{d_f} \right)^2 \times (1 + \sin \phi \sin \delta + \cos \phi \cos \delta \sin \delta) \quad (2.2)$$

$$N = \frac{2}{15} \tan \cos (\phi + \delta) + 0.83 \quad (2.3)$$
RESULTADOS

Os parâmetros da regressão obtidos para o município de N.S. das Dores são apresentados na Tabela 1. Além disso, a Figura 1 mostra o ajuste do modelo de estimativa da radiação solar global incidente à superfície com base na insolação efetiva para o período seco.

TABELA 1 Valores de \(a_1 \) e \(b_1 \) da equação (2.1) obtidos para N.S. das Dores.

<table>
<thead>
<tr>
<th>PERÍODO</th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>CR</th>
<th>EPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>0.28</td>
<td>0.43</td>
<td>0.83</td>
<td>0.07</td>
</tr>
<tr>
<td>1974</td>
<td>0.22</td>
<td>0.40</td>
<td>0.88</td>
<td>0.08</td>
</tr>
<tr>
<td>seco</td>
<td>0.26</td>
<td>0.45</td>
<td>0.85</td>
<td>0.05</td>
</tr>
<tr>
<td>chuvoso</td>
<td>0.24</td>
<td>0.38</td>
<td>0.84</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Azevedo et al. (1981) encontrou para o mês de outubro valores das constantes \(a_1 \) e \(b_1 \) para algumas localidades da região semi-árida do Nordeste valores médios de 0,28 e 0,43, respectivamente. Sousa (1991) encontrou valores de \(a_1=0.29 \) e \(b_1=0.39 \) para o município de Sumé-Pb para o período de outubro a dezembro. Vários autores determinaram estes coeficientes para latitudes entre 6° e 61° e encontraram valores médios de \(a_1=0.25 \) e \(b_1=0.50 \) (Brutsaert, 1982).

FIGURA 1 Ajuste do modelo de estimativa da radiação solar incidente com base na insolação efetiva (Relação de Prescott).
REFERÊNCIAS BIBLIOGRÁFICAS

