PROBABILIDADE DE OCORRÊNCIA DE CHUVA NA REGIÃO DOS TABULEIROS COSTEIROS E BAIXADA LITORÂNEA DO ESTADO DE SERGIPE

Ana Alexandrina Gama da Silva - EMBRAPA/CPATC - Aracaju-Se
Ana Paula Barbosa Ávila Macêdo - CEPES/CODISE - Aracaju-Se

RESUMO

Analisaram-se vinte e quatro (24) séries de precipitações mensais registradas na região dos tabuleiros costeiros e baixada litorânea do estado de Sergipe. Para verificar a homogeneidade das séries utilizou-se o "run test". A probabilidade de ocorrência de chuva para cada mês foi obtida através da distribuição gama incompleta. Os parâmetros da distribuição foram estimados pelo método da máxima verossimilhança. Na verificação do ajuste das séries observadas às curvas teóricas utilizou-se o teste Kolmogorov-Smirnov ao nível de 10% de significância. Verificou-se que a distribuição gama incompleta ajustou de modo adequado a distribuição de frequência dos dados observados. Apresenta-se para as vinte e quatro localidades, as precipitações esperadas aos níveis de 5% a 95% de probabilidade para os meses correspondentes ao período de chuva na região (março a agosto) e para os totais acumulados no trimestre mais chuvoso.

INTRODUÇÃO

A ocorrência de precipitação pluviais em um dado período constitui-se em um evento aleatório, apresentando grande variabilidade temporal. Devido a este fato, períodos de déficits ou de excessos hídricos são frequentes e variam em grande intensidade (Faria e Wagner, 1990). Os déficits hídricos causados por vários ciclos de estiagens durante o período chuvoso resultam, com frequência, na perda parcial das safras agrícolas, trazendo como consequência sérios problemas sócio-econômicos.

Na região dos tabuleiros costeiros e baixada litorânea do estado de Sergipe, a estação chuvosa ocorre, em geral, de março a agosto. Este período corresponde ao cultivo das lavouras tradicionais de sequioe. A precipitação total anual na região é relativamente alta, em torno de 1300mm. A grande variabilidade temporal das chuvas, com totais anuais que podem variar desde 600mm até 2300mm para uma mesma localidade e os altos valores dos desvios padrões observados mostram que, mesmo durante o trimestre mais chuvoso, a precipitação média não constitui-se em um bom estimador da chuva esperada. O conhecimento da precipitação mínima esperada que corresponde a uma dada probabilidade, precipitação dependente, proporciona uma informação mais precisa nas tomadas de decisões e no planejamento das atividades agrícolas. O nível de 75% de probabilidade é apontado na literatura como o mais adequado à finalidades agrícolas.

Neste trabalho analisaram-se vinte e quatro (24) séries de precipitações mensais registradas na região dos tabuleiros costeiros e baixada litorânea do estado de Sergipe, ajustando-se os dados pluviométricos à distribuição gama incompleta.

MATERIAL E MÉTODO

Os dados utilizados foram registrados nos postos pluviométricos da SUDENE (SUDENE, 1990), situados nas localidades selecionadas. A análise foi feita para o período de 1965 a 1984. Na verificação da homogeneidade das séries utilizou-se o "run test".

As probabilidades de ocorrência de chuvas foram obtidas através da distribuição gama incompleta, cuja função de distribuição acumulada é dada por:
onde $P(x)$ é a probabilidade de que x esteja entre 0 e o valor x_0; α é o parâmetro de forma (adimensional); β é o parâmetro de escala (mm); e é a base do logaritmo neperiano; x é o total de precipitação (mm); Γ é a função gama, definida por:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x/\beta} dx$$

A função gama foi avaliada através do algoritmo de Collinge (1961). Os parâmetros da distribuição foram estimados através de equações derivadas do método da máxima verossimilhança (Thom, 1958). A equação (1) foi resolvida através da aproximação de Newton (Weaver e Miller, 1967). A distribuição da frequência relativa acumulada (F) dos pontos observados foram calculados através da equação de Kimball ($F=m/(n+1)$), onde m é a ordem atribuída aos dados classificados em ordem decrescente e n é o número total de anos da série. O teste Kolmogorov-Smirnov ao nível de 10% de significância foi utilizado na verificação do ajuste das séries observadas à distribuição gama incompleta.

RESULTADOS E CONCLUSÕES

O teste Kolmogorov-Smirnov mostrou que a distribuição de frequência dos dados observados ajustou-se de modo adequado à distribuição gama incompleta.

Determinou-se para as vinte e quatro (24) localidades selecionadas as precipitações mínimas esperadas correspondentes aos níveis de 5% e 95% de probabilidade para os meses de março a agosto e para o trimestre mais chuvoso.

A comparação entre os níveis de probabilidade de 25% e 75% permite obter informações sobre a precipitação esperada em 50% dos anos. Esta informação é mais precisa que o procedimento habitual de assumir-se que em metade dos casos a precipitação esperada está abaixo da média ou coincide com ela.

Analisou-se, considerando-se o nível de 75% de probabilidade, em quantos meses a precipitação mínima esperada em cada localidade excede um valor crítico estabelecido em função da demanda climática local. Constatou-se que na maioria das localidades somente para um período de quatro meses ou menor, a precipitação esperada a este nível excede o valor crítico estabelecido.

O traçado das isolinhas de precipitação esperada ao nível de 75% de probabilidade permitiu verificar que a precipitação dependente tem índices mais altos no litoral e diminui com a proximidade do interior do Estado.

BIBLIOGRAFIA

