ANÁLISE DE PARÂMETROS MORFOLÓGICOS DO MELOEIRO
SUBMETIDO A DUAS LÂMINAS DE ÁGUA

José Alberto da Silva Ferreira¹, Bernardo Barbosa da Silva², José Espínola Sobrinho³, Edinor Lima Moura Neto⁴

RESUMO
O comportamento da biomassa e da área foliar do meloeiro, submetido à duas láminas de água, foi analisado em experimento realizado entre 22 de outubro de 1993 a 5 de janeiro de 1994, em Mossoró - RN. Foram obtidas as regressões dos dados brutos de cada variável. Os resultados mostraram uma diferença de até 49,5% de biomassa seca entre as parcelas PN e P3. A diferença entre as biomassas seca e verde na parcela PN foi de 90,4%, e na parcela P3 foi 90,4%. Através dos resultados foi possível observar que um decréscimo na lâmina de água foi suficiente para alterar os parâmetros morfológicos da cultura, mesmo havendo uma irrigação diária.

INTRODUÇÃO
O crescimento e a produção das culturas são substancialmente afetados pelas condições climatológicas do local, o que tem propiciado a realização de diversas pesquisas agrometeorológicas visando, basicamente, otimizar o uso da água e aumentar a eficiência no aproveitamento dos potenciais locais. No nordeste brasileiro, que é uma região semi-árida, a irrigação tem se constituído numa grande alternativa no desenvolvimento regional, haja vista a geração de empregos, aumento da produtividade e viabilização da agricultura como alternativa de investimento. O objetivo desse trabalho é analisar o comportamento da biomassa verde, biomassa seca e área foliar do melão (Cucumis melo L.), submetido a duas láminas de água, em experimento realizado na fazenda São João, localizada no município de Mossoró - RN (5° 12' S, 37° 12' N e 280 m).

MATERIAL E MÉTODOS
As plantas foram coletadas aleatoriamente, sendo três por parcela. A irrigação foi normal até o 30 DAS (dia após a semeadura), quando a parcela PN continuou a 100% da irrigação normal e a parcela P3 somente 70%. A irrigação era baseada na evaporação de um tanque classe "A" instalado no interior da fazenda. A irrigação era feita diariamente através de gotejadores. Cada parcela era constituída de quatro fileiras, com uma extensão de 100 m cada, e com um gotejador a cada metro. Foram semeadas três plantas próximo a cada gotejador.

Através dos dados brutos, foi feita uma regressão para cada variável (BV, BS e AF) por tratamento, através do software Curvefit, pois, de acordo com Benicasa (1988), os valores obtidos por regressão representam melhor a evolução estacional da cultura.

RESULTADOS
A tabela a seguir mostra os valores médios das biomassas verde e seca e a área foliar, das duas parcelas.
<table>
<thead>
<tr>
<th>DAS</th>
<th>B.V. PN</th>
<th>B.V. P3</th>
<th>B.S. PN</th>
<th>B.S. P3</th>
<th>A.F. PN</th>
<th>A.F. P3</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>47.06</td>
<td>47.06</td>
<td>4.51</td>
<td>4.51</td>
<td>757.64</td>
<td>757.64</td>
</tr>
<tr>
<td>26</td>
<td>191.95</td>
<td>191.95</td>
<td>23.69</td>
<td>23.69</td>
<td>2650.97</td>
<td>2650.97</td>
</tr>
<tr>
<td>31</td>
<td>449.00</td>
<td>371.84</td>
<td>41.15</td>
<td>50.07</td>
<td>5832.28</td>
<td>6714.81</td>
</tr>
<tr>
<td>36</td>
<td>1032.8</td>
<td>1249.89</td>
<td>106.07</td>
<td>124.44</td>
<td>10420.36</td>
<td>12020.36</td>
</tr>
<tr>
<td>42</td>
<td>2693.11</td>
<td>2851.08</td>
<td>215.01</td>
<td>223.35</td>
<td>19570.15</td>
<td>17301.75</td>
</tr>
<tr>
<td>46</td>
<td>4424.50</td>
<td>3319.19</td>
<td>233.81</td>
<td>219.46</td>
<td>24988.17</td>
<td>16655.68</td>
</tr>
<tr>
<td>51</td>
<td>6760.90</td>
<td>3406.83</td>
<td>468.94</td>
<td>236.98</td>
<td>33921.94</td>
<td>16426.33</td>
</tr>
<tr>
<td>56</td>
<td>3738.53</td>
<td>3628.87</td>
<td>284.63</td>
<td>288.56</td>
<td>19783.00</td>
<td>17043.14</td>
</tr>
<tr>
<td>61</td>
<td>3872.55</td>
<td>2201.60</td>
<td>323.64</td>
<td>176.27</td>
<td>18649.78</td>
<td>13865.20</td>
</tr>
<tr>
<td>66</td>
<td>4393.06</td>
<td>1506.44</td>
<td>319.34</td>
<td>169.62</td>
<td>11838.22</td>
<td>10755.13</td>
</tr>
<tr>
<td>70</td>
<td>3395.08</td>
<td>2918.21</td>
<td>296.46</td>
<td>261.83</td>
<td>19948.57</td>
<td>18641.78</td>
</tr>
<tr>
<td>76</td>
<td>1547.62</td>
<td>1442.09</td>
<td>197.64</td>
<td>185.01</td>
<td>16624.25</td>
<td>12628.28</td>
</tr>
</tbody>
</table>

onde B.V. = Biomassa Verde (g), B.S. = Biomassa Seca (g) e A.F. = Área Foliar (cm²).

A tabela a seguir mostra as variáveis estudadas e as equações de regressão obtidas.

<table>
<thead>
<tr>
<th>Equação de regressão</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>BV PN = (5568.8277 x EXP(DAS - 56.9417)²)/-275.3091</td>
<td>0.9779</td>
</tr>
<tr>
<td>BV P3 = 0.3862 x 10⁻¹³ x 0.7865 DAS x DAS¹³.02</td>
<td>0.9512</td>
</tr>
<tr>
<td>BS PN = 0.1712 x 10⁻¹² x 0.8194 DAS x DAS¹¹.52</td>
<td>0.9799</td>
</tr>
<tr>
<td>BS P3 = (235.8 x EXP(ln(DAS) - 56.9417)²)/-275.3091</td>
<td>0.9739</td>
</tr>
<tr>
<td>AF PN = (2268 x EXP(ln(DAS) - 3.984)²)/-0.2526</td>
<td>0.9444</td>
</tr>
<tr>
<td>AF P3 = (18110 x EXP(ln(DAS) - 3.966)²)/0.2715</td>
<td>0.9668</td>
</tr>
</tbody>
</table>

A evolução da cultura em termos de massa verde, em um determinado momento e durante o ciclo vegetativo da mesma, é obtido pela análise do crescimento da cultura, através da biomassa verde desta. A figura 1 mostra os dados coletados e as regressões da biomassa verde para as parcelas PN e P3. É possível notar um crescimento maior na parcela PN, entre os 40 e 60 DAS, do que na parcela P3. Esse crescimento é devido a maior irrigação e do valor obtido no 51 DAS, que foi muito alto (6760.7 g), na parcela PN. A parcela PN apresenta valores com uma dispersão maior a partir do 51 DAS na biomassa verde, e não apresenta na seca (figura 2), com exceção do valor do 51 DAS, mostrando que a quantidade de água absorvida pelas plantas da parcela PN foi maior que as da parcela P3, influenciando na dispersão.

A figura 2 mostra que a parcela PN produziu uma quantidade maior de matéria seca, com relação à P3, e que os valores apresentam um comportamento mais uniforme sem grandes dispersões, demonstrando assim, um aumento gradativo ao longo do ciclo da cultura.

FIGURA 1 e 2 Quadradros representam valores de PN e triângulos de P3.

A diferença entre a biomassa seca de PN e P3 foi muito pequena até o 46 DAS, inclusive com alguns valores da parcela P3 maiores do que a PN, quando após, os valores de P3 chegaram a ser 46.9 % menores do que os de PN, chegando a atingir 49.5 % no 51 DAS.

150
Já a diferença entre os tratamentos, isto é, entre a biomassa verde e seca das parcelas PN e P3 foram, em média, 91.1% na PN e 90.4% na P3.

A área foliar obtida para os dois tratamentos, que permite avaliar o rendimento de uma cultura como aproveitamento da radiação fotosinteticamente ativa ou o aproveitamento do gás carbônico, é mostrada na figura 3. O valor máximo atingido na parcela PN é de 3.4 m² no 51 DAS e de 1.9 m² no 70 DAS, após o pico máximo da curva de regressão de P3.

FIGURA 3 Quadrados representam valores de PN e triângulos de P3.

CONCLUSÕES

Fica evidente a influência do fator água nas três variáveis, principalmente na biomassa verde. O decréscimo de 30% de irrigação foi o suficiente para alterar o desenvolvimento e o crescimento da cultura, evidenciando a grande necessidade hídrica da cultura do meloeiro. A diferença entre as biomassas verde e seca das parcelas PN e P3, que atingiram 91.1 e 90.4% respectivamente, demonstra isso.

AGRADECIMENTOS

Os autores agradecem à indispensável colaboração prestada pelos dirigentes e técnicos da fazenda São João, Mossoró-RN.

BIBLIOGRAFIA UTILIZADA
