INFORMAÇÃO CLIMÁTICA PARA PLANEJAMENTO DA IRRIGAÇÃO DAS PASTAGENS NA FRONTEIRA SUL E LITORAL DO RIO GRANDE DO SUL

JOSÉ FERNANDO ACOSTA SILVEIRA DA MOTA, M.Sc.
PROFESSOR ADJUNTO - UFPEL
CAIXA POSTAL 354 - PELOTAS - RS

RESUMO - A variação, de ano para ano, da produção de massa verde das pastagens durante a primavera, verão e outono nas regiões da Fronteira Sul e Litoral do Rio Grande do Sul está principalmente associada com a ocorrência de secas. A irrigação é uma possível solução para o problema das secas. No planejamento dos sistemas de irrigação o conhecimento das demandas mais prováveis de água se torna necessário. A técnica do balanço hídrico meteorológico diário foi usada para estimar as necessidades de água de irrigação durante um longo tempo para 5 localidades que representam várias situações climáticas e a maior parte dos tipos de solos destas regiões. As necessidades totais de água de irrigação cobrindo o período outubro a abril são expressas estatisticamente em termos de risco, interpretados como 2 anos em cada 10 em que a necessidade de irrigação excede o valor calculado. As necessidades de irrigação são dadas em mapa representando as regiões clima-solo.

UNITERMOS: Clima; irrigação; planejamento; pastagens; Rio Grande do Sul.

INTRODUÇÃO

A variação, de ano para ano, da produção de massa verde das pastagens durante a primavera, verão e outono nas regiões da Fronteira Sul e Litoral do Rio Grande do Sul está principalmente associada com a ocorrência de secas, segundo MOTA et alii (2).

A irrigação é uma possível solução para o problema da seca.

No planejamento dos sistemas de irrigação, seja para o sistema geral de distribuição de água ou em relação ao sistema de irrigação a nível de propriedade, o conhecimento das demandas mais prováveis de água se torna necessário. Medidas durante muito tempo, das necessidades de água para irrigação, a
nível de campo, são dispensiosas.

Uma vez que a necessidade de irrigação é determinada primariamente pela falta de chuva e a evapotranspiração da cultura, é relativamente simples estimar a necessidade de água de irrigação a partir de elementos climáticos disponíveis. Além disso, uma vez que os dados climáticos estão disponíveis para longos períodos de tempo para várias localidades, é possível estimar as necessidades de água em base probabilística a partir de registros de estações com mais de 30 anos na maioria das áreas com potencial de irrigação nas regiões estudadas.

As necessidades semanais gerais de irrigação, estimadas através de dados climáticos para o período 1943-1972, foram recentemente publicadas para 10 estações meteorológicas do Rio Grande do Sul por MOTA (1).

Estas estimativas fornecem as estatísticas necessárias para responder questões frequentemente feitas por técnicos em irrigação, como:

(1) Quais são as necessidades de irrigação em 80% dos anos para assegurar um bom retorno econômico ao criador de gado bobino e ovino?

(2) Como as variações do solo no Rio Grande do Sul afetam essas necessidades?

Este estudo demonstra o uso das estimativas climáticas de irrigação para responder estas questões.

MATERIAL E MÉTODOS

A técnica de balanço hídrico diário meteorológico desenvolvida para estimar as necessidades de irrigação é brevemente descrita a seguir. Detalhes foram dados anteriormente por BAITER & RUSSELO (3) e MOTA (4). Esta técnica foi usada na análise climática de 10 estações no Rio Grande do Sul.

O cálculo do balanço hídrico diário é baseado em medidas diárias de precipitação (P) e estimativas de evapotranspiração de referência (ER). Estimativas diárias da ER foram obtidas a partir da fórmula de Penman com coeficientes adaptados às condições climáticas do Rio Grande do Sul por MOTA & BEIRSDORF (5).

Desde que o processo do balanço hídrico meteorológico assume que a necessidade de irrigação calculada é aplicada, a evapotranspiração atual (EA) é igual a ER durante todo o período de irrigação.

O balanço hídrico diário começa cada ano em uma data determinada, com um conteúdo de umidade igual à capacidade de armazenamento de um solo em particular. Capacidade de armazenamento é aqui definida como a quantidade de água (em mm) que pode ser retida pelo solo e é facilmente disponível às plan-
tas (50% do total de água disponível). A diferença entre P e ER é adicionada algebraicamente ao conteúdo inicial de umidade do solo. O novo valor da umidade do solo não pode exceder a capacidade de armazenamento e o excesso foi considerado como deflúvio superficial ou percolação profunda.

Quando toda a água facilmente disponível no solo foi consumida, as diferenças diárias (valores negativos de P - ER), são acumuladas em períodos de 7 dias para obter as necessidades de irrigação semanais. A soma dessas necessidades semanais de irrigação para todo o ciclo vital da cultura fornece as necessidades totais de água para irrigação. As necessidades semanais são analisadas independentemente e finalmente expressas em termos de riscos de necessidade de irrigação. O termo risco foi aqui usado interpretando-se como 2 anos em cada 10 em que as necessidades de irrigação excedem o valor calculado. Os tipos de solos considerados são aqueles descritos no Mapa de Solos do Brasil publicado pela EMBRAPA (6).

Estas necessidades gerais de irrigação são fornecidas por MOTA (1), em milímetros, para 8 capacidades de água facilmente disponível (i = 5,0; 10,0; 15,0; 20,0; 30,0; 50,0; 75,0 e 100,0 mm), representando a maioria dos tipos de solos do Rio Grande do Sul, e para os seguintes coeficientes de uso da água (kc) de acordo com as culturas e seus estágios de desenvolvimento: 0,9; 1,0; 1,25; 1,50; 1,75.

Estes fatores de uso da água são maiores que os indicados por DOORENBOS & PRUITT (7) porque a ER foi calculada pelo método de Penman em lugar do tanque de evaporação classe A usado pelos autores mencionados.

Nas nossas condições, segundo MOTA & BEIRSDORF (5), a evaporação do tanque classe A é 1,3 vezes maior do que a ER de Penman e portanto os fatores de uso de DOORENBOS & PRUITT (7) foram multiplicados por 1,3. Para pastagens irrigadas estes autores indicam para kc o valor 1,00. Em nosso caso, multiplicamos este fator por 1,3.

As estimativas climáticas podem ser consideradas como uma interpretação do efeito da precipitação e da evapotranspiração em uma combinação particular solo-cultura. Estas não levam em consideração a eficiência do sistema de irrigação; portanto, os dados foram multiplicados por 1,1 para o sistema de irrigação por aspersão (90% de eficiência) para obter o volume total de água a ser aplicado nas pastagens que são irrigadas por aspersão.

RESULTADOS E DISCUSSÃO

O total das necessidades climáticas de irrigação no período outubro a abril são dados na Tabela 1, para um risco de 2 anos em cada 10.
TABELA 1 - Necessidade climática de água de irrigação para pastagens no período outubro - abril nas regiões da Fronteira Sul e Litoral do Estado do Rio Grande do Sul, Brasil.

<table>
<thead>
<tr>
<th>LOCALIDADE</th>
<th>CAPACIDADE DE ARMAZENAMENTO DE Água FACILMENTE DISPONÍVEL (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td>FRONTEIRA SUL</td>
<td></td>
</tr>
<tr>
<td>· Bagé</td>
<td>777,7</td>
</tr>
<tr>
<td>· Uruguaiana</td>
<td>787,4</td>
</tr>
<tr>
<td>LITORAL</td>
<td></td>
</tr>
<tr>
<td>· Pelotas</td>
<td>655,9</td>
</tr>
<tr>
<td>· Porto Alegre</td>
<td>791,9</td>
</tr>
<tr>
<td>· Santa Vitória</td>
<td>770,1</td>
</tr>
</tbody>
</table>

A Figura 1 mostra regiões que resultam de diferentes combinações de clima e capacidade de armazenamento de água facilmente disponível nos principais tipos de solos.

Ao nível de propriedade agrícola, o máximo de capacidade de água armazenada facilmente disponível dos solos de uma área particular de terras pode ser maior ou menor do que a do solo representativo de uma dada região no mapa da Figura 1. Se o criador tiver conhecimento da capacidade de armazenamento de água facilmente disponível dos solos que lhe interessam, poderá usar os dados da Tabela 1, de acordo com a estação climática representativa da sua região e o valor da capacidade de armazenamento de água facilmente disponível em lugar do valor indicado para sua região na Figura 1. Se para sua região não houver estação climática indicada, poderá usar a estação mais próxima.

Em um dado ano, a necessidade de água para irrigação, para uma situação específica deve ser determinada por métodos adequados disponíveis, pois os valores na Figura 1 e Tabela 1, são indicados para o planejamento da irrigação a longo prazo, como por exemplo, a quantidade de água que deve estar disponível ou armazenada para irrigar uma dada área de pastagens.

CONCLUSÕES

As quantidades de irrigação necessárias variam de 329,8 a 791,9 mm, de-
FIGURA 1. REGIÕES COM DIFERENTES COMBINAÇÕES CLIMA-SOLO PARA NECESSIDADE DE ÁGUA DE IRRIGAÇÃO PARA PASTAGENS NO PERÍODO OUTUBRO-ABRIL NA FRONTIERA SUL E LITORAL DO RIO GRANDE DO SUL. OS VALORES EM mm SÃO PARA SISTEMAS DE IRRIGAÇÃO POR ASPERSÃO E NÃO SERÃO EXCEDIDOS EM 80% DOS ANOS.
pendendo do clima e do tipo de solo; estes valores só são excedidos 2 vezes em cada 10 anos.

As maiores necessidade de irrigação encontradas foram para solos com 5,0 mm de capacidade de armazenamento de água facilmente disponível na região sudeste da fronteira com o Uruguai, e nos extremos sul e norte do litoral do Oceano Atlântico; as quantidades menores de necessidade de irrigação foram encontradas para os solos com 100,0 mm de capacidade de armazenamento de água facilmente disponível na encosta leste da Serra do Sudeste (329,8 mm).

MOTA, J. F. S. DA, 1989. CLIMATIC INFORMATION FOR PLANNING PASTURE IRRIGATION IN THE LITORAL AND SOUTH FRONTIER REGIONS OF RIO GRANDE DO SUL ESTATE, BRAZIL.

ABSTRACT - Pasture yield variability from year to year in the Litoral and South Frontier regions of Rio Grande do Sul is mainly associated with the occurrence of drought. Irrigation is a possible solution for the drought problem. In planning irrigation systems some knowledge of the most probable water demands is required. A daily meteorological budgeting technique was used for estimating irrigation water requirements over a long-term period of time for 5 locations representing most climatic situations and for most soil types. The total water irrigation requirements, for the period october to april, are statistically expressed in terms of risks, interpreted as 2 years out of 10 that the irrigation requirements exceeds the calculated value. The irrigation requirements are given in a map representing the climate-soil regions.

KEY-WORDS: climate; irrigation; planning; pasture; Rio Grande do Sul; Brazil.

REFERÊNCIAS BIBLIOGRÁFICAS


6. EMBRAPA, 1981. Soils Map of Brazil (Mapa de Solos do Brasil), EMBRAPA, Brasília, map.: 1:5.000.000.