MEDIÇÕES POROMÉTRICAS NAS FACES ABAXIAL E ADAXIAL DAS FOLHAS DO MELOEIRO (Cucumis melo,L.)

José ESPÍNOLA SOBRINHO¹, Paulo César de BRITO², Bernardo Barbosa da SILVA³, Francisco BEZERRA NETO⁴, Jorge Moreira MAIA NETO⁵

RESUMO

Este trabalho foi desenvolvido em Mossoró-RN com os dados coletados de 05 em 05 dias e de hora em hora, do vigésimo ao septuagésimo dia após a semeadura, em três plantas escolhidas aleatoriamente no campo. A variação da temperatura ao longo do ciclo da cultura, praticamente não evidenciou diferença quando comparadas as faces abaxia+l e adaxial das folhas. A temperatura do ar esteve sempre acima da temperatura da folha em ambas as faces. A transpiração e a condutância estomática apresentaram uma tendência decrescente do início ao fim do ciclo, com maiores valores na face abaxial.

INTRODUÇÃO

O melão (*Cucumis melo*, *L.*) é uma espécie olerícola, pertencente à família das cucurbitáceas. No Brasil foi introduzido na década de sessenta, no Rio Grande do Sul. A partir de 1970 surgiram outros núcleos de produção em São Paulo, Pará e na região do São Francisco (Pedrosa, 1991).

O Rio Grande do Norte possui, hoje, uma área plantada de aproximadamente 8500 ha e uma produtividade média em torno de 40 ton ha⁻¹.

Esta cultura para ser explorada exige a máxima qualidade comercial e para isto, o clima é um fator fundamental. Para que a mesma produza frutos com maiores teores de açucares, mais consistentes e com maior durabilidade é necessário que se tenha altas temperaturas e baixa umidade relativa do ar (Filgueira, 1981). O estado do Rio Grande do Norte, por suas características climáticas, apresenta perfeitas condições para o cultivo desta olerícola. Porém, isto só é possível com o auxílio da irrigação, uma vez que a cultura é bastante sensível ao déficit hídrico.

O presente trabalho objetivou analisar o comportamento dos dados porométricos coletados em ambas as faces das folhas do meloeiro, em todas as fases de desenvolvimento da cultura no campo.

MATERIAL E MÉTODOS

Este trabalho foi desenvolvido em área da Fazenda São João LTDA, no município de Mossoró-RN, (latitude 5° 11 S, longitude 37° 20 W e altitude 18m).

Os dados foram coletados em um campo de exploração comercial plantado com a cultura do melão (*Cucumis melo, L.*), variedade Valenciano Amarelo, cv. Rio-sol, no período de 09 de novembro a 29 de dezembro de 1995, entre o vigésimo e o septuagésimo dia após a semeadura (DAS).

O equipamento usado para coleta dos dados foi um porômetro de estado estável LI-1600 da LICOR. Foram medidos os seguintes parâmetros: temperatura do ar na câmara (TC), temperatura da folha (TF), fluxo de vapor de água (FV), condutância estomática (CS) e transpiração (TR). As medições foram efetuadas em intervalos de 05 dias, de hora em hora, das 07:00 às 17:00 horas, nas faces abaxial e adaxial de folhas vigorosas e ensolaradas. Para as medições foram escolhidas, aleatóriamente, três plantas e em cada planta três folhas.

O estudo estatístico dos dados foi feito através da análise de variância com delineamento de classificação hierárquica com três repetições. Para comparação entre os níveis do fator qualitativo utilizouse o teste de Tukey a 1 % de probabilidade.

¹ MSc. Professor adjunto do Departamento de Engenharia Agrícola da ESAM, Caixa Postal 137. CEP 59 625-900, Mossoró-RN. E-mail: engeagro@esam.br.

² Estudante do Curso de Graduação em Engenharia Agronômica, ESAM.

³ Dr. Professor adjunto da UFPb, Campus II, Campina Grande-PB.

⁴ PhD, Professor adjunto do Departamento de Fitotecnia da ESAM, Caixa Postal 137. CEP 59 625-900, Mossoró-RN.

⁵ Engenheiro agrônomo, autônomo. Campo Irrigação. Av. Pres. Dutra, s/n, Mossoró-RN.

RESULTADOS E DISCUSSÃO

Dos dados coletados no campo, neste trabalho foram analisados apenas as temperaturas do ar e das folhas, a transpiração e a condutividade estomática.

O estresse hídrico traz como consequência uma diminuição na transpiração, fazendo com que as folhas absorvam diretamente parte da energia solar, aumentando assim a sua temperatura. Em função disto é que a temperatura das folhas tem sido usada como indicadora do estresse hídrico em culturas (Brito de Souza, 1994).

A Figura 1 mostra o comportamento médio da temperatura do ar e das folhas, nas faces abaxial e adaxial, do vigésimo ao septuagésimo dia após a semeadura. Percebe-se que praticamente não houve diferença de uma face para a outra . Ambas apresentaram valores máximos 33,95 e 33,99 °C nas faces abaxial e adaxial, respectivamente, aos 70 DAS, embora em termos absolutos esses valores tenham sido 38,86 e 38,52 ° C às 12:00 horas do dia 29 de dezembro de 1995, quando a cultura já encontrava-se bastante estressada e em senescência.

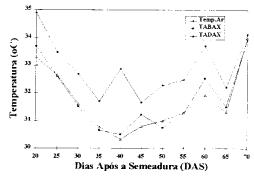
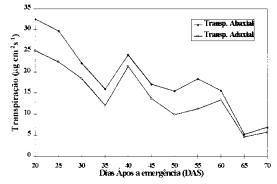


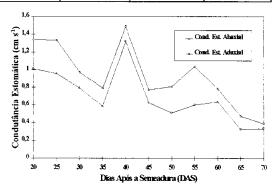
FIGURA 1. Variação estacional da temperatura do ar e das faces das folhas do melociro.

De acordo com a Figura 1. observa-se que a temperatura do ar foi sempre superior à temperatura da cultura em ambas as faces das folhas, uma vez que a cultura esteve sempre em condições ótimas de umidade durante todo o ciclo.

A transpiração pode ser descrita em termos de uma resistência ao fluxo turbulento do vapor para o meio exterior. No momento em que os estômatos se encontram abertos a transpiração é determinada, a princípio, pela energia fotossinteticamente ativa. À medida em que o déficit hídrico aumenta, há gradativamente fechamento dos estômatos, consequentemente, a transpiração é reduzida. A variação da transpiração se dá devido a vários fatores, entre eles citamos, a radiação solar, temperatura do ar e a lâmina de irrigação. Silva (1994) concluiu que as folhas sombreadas e mais idosas transpiram bem menos que as folhas jovens e ensolaradas.

De acordo com a Tabela 1, percebe-se que os valores máximos da transpiração, em ambas as faces das folhas, ocorreram aos 20 dias após a semeadura (DAS = 20), com valores 32,49 e 25,04 μ g cm⁻² s⁻¹ para as faces abaxial e adaxial, respectivamente. Esses valores máximos podem estar associados à intensa energia fotossintética no período e elevados valores de temperatura do ar.


A Figura 2 ilustra o comportamento estacional decrescente dos valores de transpiração da cultura ao longo de todo o ciclo, sendo que a face abaxial apresentou sempre valores mais elevados que a face adaxial. Isto, provavelmente em função do maior número de estômatos na face inferior das folhas.


A Tabela 1 e a Figura 3 apresentam o comportamento estacional da condutância estomática nas faces abaxial e adaxial das folhas. Os maiores valores foram observados no quadragésimo dia após a semeadura (DAS = 40), 1,49 e 1,32 cm s⁻¹, respectivamente. Observou-se também que os valores da condutância foram mais elevados na face abaxial e que em ambas as faces decresceram acentuadamente a partir de 15:00 horas Nos últimos dias de medições verificou-se também que a condutância estomática já apresentava-se

totalmente diferente do comportamento no início e meio do desenvolvimento fenológico da cultura, com valores bastante baixos ao longo do dia, caracterizando um período de déficit hídrico, uma vez que a cultura já encontrava-se em senescência.

TABELA 1.	Valores médios	dos parâmetros	porométricos	medidos no campo

DAS	Temp. do Ar (°C) Temp. da Folha (°C)		Transp. (μg cm ⁻² s ⁻¹)		Cond. Est. (cm s ⁻¹)		
		Abaxial	Adaxial	Abaxial	Adaxial	Abaxial	Adaxial
20	34.88	33.68	33.63	32.49	25.04	1.34	1.01
25	33.47	32.60	32.64	29.69	22.41	1.34	0.96
-30	32.68	31.52	31.61	22.15	18.37	0.97	0.79
35	31.70	30.65	30.77	15.90	12.05	0.79	0.59
40	32.87	30.50	30.33	24.08	21.33	1.49	1.32
45	31.66	31.22	31.09	17.01	13.63	0.77	0.63
50	32.28	30.74	31.00	15.40	9.83	0.81	0.51
55	32.48	31.28	31.29	18.34	11.15	1.04	0.60
60	33.71	32.53	31.92	15.53	13.31	0.78	0.64
65	32.21	31.50	31.31	5.22	4.56	0.48	0.33
70	34.12	33.95	33.99	6.81	5.69	0.39	0.33

FIGURAS 2 e 3. Distribuição temporal da transpiração e da condutância estomática do meloeiro.

Após a análise qualitativa dos três parâmetros estudados, constatou-se que, somente a transpiração apresentou interação estatística com a posição dentro do tipo de folha, com um valor de "F" igual a 33,28**, sendo portanto significativo ao nível de 1 % de probabilidade.

CONCLUSÕES

Em função dos resultados, concluiu-se, que em medições porométricas a temperatura das folhas pode ser determinada em qualquer uma das faces, porém, a transpiração e a condutância estomática apresentam valores mais elevados na face abaxial.

BIBLIOGRAFIA

BRITO DE SOUZA, C. Estudo de parâmetros morfo-fisiológicos na cultura do algodoeiro herbáceo (Gossypium hirsutum, L.) em condições diferenciadas de irrigação no vale do Assú (RN). Campina Grande: UFPb, 1994. 73p. Tese de Mestrado em Engenharia Agrícola.

FILGUEIRA, F. A. R. Manual de olericultura: cultura e comercialização de ortaliças. 2 . ed . São Paulo: Ceres, 338p., v. 1. 1981.

PEDROSA, J. F. O eldorado do melão. Gazeta do Oeste. Mossoró-RN, p. 8, 1991. (Opinião).

SILVA, B. B. Estresse hídrico em algodoeiro herbáceo irrigado evidenciado pela termometria infravermelha. Campina Grande: UFPb, 1994. 139p. Tese de Doutorado em Engenharia civil.