CARACTERÍSTICAS AERODINÂMICAS DA VIDEIRA NIAGARA ROSADA

Mário José Pedro Júnior (1,4)
Paulo Cesar Sentelhas (2)
Fernando Picarelli Martins (3,4)

O crescimento e produção das culturas são substancialmente afetadas pelas condições climáticas do local assim como pelo microclima da comunidade vegetal. As trocas dos constituintes da atmosfera entre as superfícies vegetadas e o ar, dependem de fatores ligados às condições micrometeorológicas das culturas, os quais irão também afetar o desenvolvimento de pragas e doenças.

A caracterização microclimática da videira apresenta algumas peculiaridades, principalmente devido à disposição da cultura no campo e a sua arquitetura foliar, as quais não permitem a formação de uma cobertura homogênea como no milho e na soja.

Para caracterizar o microclima da videira foram determinados os perfis de vento através de anemômetros, respectivamente, em diferentes alturas (z) que variaram entre 20 e 320 cm. O ensaio foi conduzido na Estação Experimental de Jundiaí, do Instituto Agrônomo de Campinas, na região produtora de uva de mesa, em videira Niagara rosada com 4 anos de idade e conduzida em espalheira com 3 fios de arame.

Foram selecionados dois dias com condições de estabilidade atmosférica próximas a neutralidade, sendo o dia 30/10/87 com ventos predominantemente paralelos as ruas da cultura e o dia 13/11/87 com ventos perpendiculares. Os perfis de vento foram determinados acima e abaixo do topo da cultura.

Através das medições horárias de velocidade do vento foram determinadas as características aerodinâmicas da videira, utilizando-se o Perfil Logarítmico de Prandtl, subtraindo dos níveis de medida da velocidade do vento um valor "d" (deslocamento do plano zero), de modo a se obter o perfil do escornho deslocado verticalmente em função da altura das plantas, como indica a equação:

\[U = U^* / K \times \ln (Z - d) / Z_0 \]

onde: \(U \) é a velocidade do vento (cm/s); \(U^* \) é a velocidade de atrito ou característica (cm/s); \(K \) é a constante de Von Karman; \(Z \) é o nível de medida (cm); \(d \) é o deslocamento do plano zero.

(1) Seção de Climatologia Agrícola, Instituto Agrônomo (IAC)
(2) IPMÉT - UNESP
(3) Estação Experimental de Jundiaí, IAC
(4) Bolsista do CNPq
(cm) e Zo é a rugosidade da superfície (cm).

Os valores de d, Zo e U foram determinados pelo método estatístico da menor variabilidade. Através desses parâmetros foi determinada a difusividade turbulenta (Km) para os diversos horários de medidas.

Os perfis de vento mostraram, em ambos os dias, que abaixo do topo da cultura há uma variação da velocidade do escoamento do ar em função da distribuição foliar e a medida que se alcança o topo da cultura a velocidade aumenta, até que acima dele o perfil passa a ser logarítmico (Figura 1). A determinação dos parâmetros aerodinâmicos permite concluir que a rugosidade (Zo) e o deslocamento do plano zero (d) na cultura da uva pode ser generalizado da seguinte forma:

\[Zo = a \times h \quad \text{onde} \ h \ \text{é a altura da cultura (cm)} \quad \text{e} \ a \ \text{varia de 0.001 a 0.1} \]

\[d = b \times h \quad \text{onde} \ b \ \text{varia de 0.80 a 0.99} \]

Os resultados obtidos mostraram existir interdependência entre “d” e “Zo” (Figura 2), ou seja quando um cresce o outro decresce, evidenciando a influência da velocidade do escoamento (U) no comportamento desses parâmetros, pois quando “U” aumenta, “Zo” também aumenta e “d” diminui.

Através dos resultados de “d” foi possível estimar a difusividade turbulenta (Km). Os resultados obtidos quando plotados contra “U” (Figura 3), mostraram no dia 30/10/87,

![Figura 1: Perfil de vento abaixo e acima do topo da cultura em diferentes horários:
A: 0-9 horas; B: 10-12 horas e C: 13-14 horas.](image1)

![Figura 2: Influência da velocidade do escoamento sobre o comportamento de “d” (deslocamento do plano zero) e “Zo” (rugosidade da superfície).](image2)

![Figura 3: Influência da velocidade do escoamento (U*) no comportamento da difusividade turbulenta (Km).](image3)
com ventos paralelos às ruas, uma relação linear de baixa correlação ($R^2 = 0.58$), ao contrário do ocorrido no dia 13/11/87 com ventos perpendiculares às ruas e a linearidade com "U" de alta correlação ($R^2 = 0.94$).

Através dos resultados verifica-se que, apesar da pouca diferença entre os valores dos parâmetros aerodinâmicos entre os dias em relação à direção dos ventos, a estimativa desses parâmetros se mostraram mais confiáveis nos dias de ventos com direção perpendicular às ruas da cultura da videira.

BIBLIOGRAFIA CONSULTADA:

DAILY CHARACTERIZATION OF TEMPERATURE AND HUMIDITY PROFILES IN A CACAO (THEOBROMA CACAO L.) PLANTATION.

Ricardo Augusto Calheiros de Miranda
Luiz Carlos Eduardo Milde
Alberto Lavigne Bichara
(CEPLAC / CEPEC / INFES)
(C.P. 07 - Itabuna (Ba) - CEP. 45.600)

INTRODUCTION

In defining a suitable climate for underlying crops, as cacao trees, it has been realized that microclimatic variables may be quite different from the standard weather data. This paper presents results on the space and time variations of temperature and humidity above and within a cacao plantation under dry and wet conditions.

MATERIALS AND METHODS

The data were collected, at the Research Station of the Cocoa Research Center situated in Ilhéus, Bahia, Brazil (14° 31' S, 36° 16' W and 55 masl). The measurements above, within and below of canopy of temperature and humidity were made using "Fuess" thermohygrographs. Calibrations of all temperature and humidity sensors were checked periodically by comparison with an Assman psychrometer at 09:00 and 15:00 hours.

RESULTS AND DISCUSSIONS

Characteristic daily profile variations at different heights of temperature and humidity, and above-canopy rainfall, within the two contrasting periods are presented.

TEMPERATURE AND HUMIDITY TIME - HEIGHT IN THE SUMMER

During the summer week, the daily pattern in the above and