GRAUS-DIA NA CULTURA DO ARROZ

Valdira de Caldas Brito VIEIRA¹, Dalva Martinelli CURY Lunardi²

RESUMO

O trabalho foi realizado no município de Teresina - PI, latitude 05º05'S, longitude 42º49' W Grw. e altitude 72m. Neste estudo procedeu-se a avaliação das necessidades térmicas dos cultivares de arroz METICA-1 e CICA-8 através do cálculo dos graus-dia acumulados, utilizando-se o método USWB 30/10 (GILMORE & ROGERS, 1958).

O cultivar METICA-1 floresceu com 1244.73 graus-dia acumulados e até o final do ciclo acumulou 1802,73 graus-dia em média. O cultivar CICA-8 apresentou, no período analisado necessidade térmica média de 1288,75 graus-dia acumulados para florescimento e 1858,60 graus-dia acumulados até o final do ciclo.

Neste trabalho o método dos graus-dia acumulados mostrou menor variação que os dias do calendário para previsão do florescimento e colheita.

INTRODUÇÃO

Embora a influência de um elemento climático sobre a cultura não possa ser considerado isoladamente, é a temperatura que exerce maior efeito na variabilidade do crescimento e desenvolvimento das plantas de arroz (SOUZA, 1990).

Durante o ciclo vegetativo, as plantas são bastante sensíveis aos efeitos da temperatura no que se refere à variação de crescimento, sendo considerada como temperatura ideal a faixa entre 25°C a 35°C SOUZA, (1990). Outros pesquisadores encontraram como faixa ótima para o período vegetativo os valores: 20°C a 38°C MORAIS *et al.* (1979); 20°C a 35°C PEDROSO (1980); 20°C a 30°C INFELD *et al.* (1985); DARIO (1992) e FERRAZ (1983). Estas variações ocorrem em função das cultivares escolhidas e sistemas de cultivo.

NEILD et al.(1983) consideram que o conhecimento dos valores diários de precipitação e evapotranspiração assim como de graus-dia acumulados são absolutamentes necessários para a avaliação da estação de crescimento em relação às respostas fenológicas das culturas.

Um dos métodos utilizados para relacionar a temperatura e o desenvolvimento é o das somas térmicas ou graus dia acumulados (GDA), definido como sendo a soma das temperaturas acima da condição mínima e abaixo da máxima necessária para que a planta atinja uma determinada fase do seu desenvolvimento (SOUZA, 1990).

Depois de se realizar esta contabilização para uma cultura em um ou dois anos. a previsão da marcha dos valores de graus-dia, nos anos subsequentes, possibilita prever a data da maturação ou colheita. Além do mais, esse controle, possibilita o planejamento adequado dos momentos em que deverão ser efetuados os tratos culturais, aplicações de nutrientes e programação da colheita, tanto no aspecto agrícola, como também no administrativo e financeiro (OMETTO, 1981).

MATERIAL E MÉTODOS

Baseado nos valores diários de temperaturas máxima e mínima do ar e temperaturas base da cultura, foram calculados os graus-dia necessários para a ocorrência das fases fenológicas dos cultivares METICA-1 E CICA-8.

¹ Doutoranda em Agronomia FCA/UNESP. Diretora do Departamento de Hidrometeorologia da Secretaria da Agricultura do Estado do Piauí. Rua João Cabral, S/N -B. Pirajá, Teresina-PI - CEP: 64.002-150.

² Dr., Prof. Departamento de Ciências Ambientais, FCA/UNESP. Caixa Postal 37,CEP: 18603-970, Botucatu-SP.

Neste trabalho foi utilizado o método Weather Bureau 30/10 (USWB 30/10), (GILMORE & ROGERS, 1958).

Esse método considera uma temperatura mínima ou temperatura base inferior para que o mecanismo metabólico da planta seja acionado e uma temperatura máxima, acima da qual o desenvolvimento da cultura fica prejudicado, sendo esta sua temperatura base superior. Os valores de temperatura abaixo da temperatura mínima basal e acima da temperatura máxima basal, são retirados do cálculo de graus-dia por constituirem-se em valores deficitários, no caso do mínimo e excessivos, no caso do máximo, para scu desenvolvimento.

A temperatura base é específica para cada cultura, podendo variar nas diferentes fases do ciclo. No caso do arroz, considera-se 10° C e 30° C como temperaturas base inferior e superior, respectivamente. O método admite que pouco ou nenhum crescimento ocorra durante o tempo em que a temperatura esteja abaixo de 10° C e acima de 30° C.

$$GDA = \sum_{i=1}^{n} (T_i - T_B)$$

sendo:

$$T_i = \underline{Tm\acute{ax}. + Tm\acute{in}.}$$

onde:

 T_i - temperatura média diária do ar (0 C); Tmáx. - temperatura máxima diária do ar (0 C); Tmín. - temperatura mínima diária do ar (0 C); T_B - temperatura base da cultura (0 C);

n - número de dias considerado

onde:

se
$$T_{m\acute{a}X}$$
. > 30°C, considera-se $T_{m\acute{a}X}$ = 30°C;
se $T_{m\acute{n}}$. < 10°C, considera-se $T_{m\acute{n}}$ = 10°C

A análise das necessidades térmicas foi feita através da comparação dos coeficientes de variação (CV) entre o número de dias do calendário e graus-dia acumulados.

RESULTADOS E DISCUSSÃO

A amplitude térmica durante os três anos de cultivo variou de 17,8°C à 38°C, com temperatura média de 28.15°C no ano de 1988; de 16.1°C à 38,4°C e temperatura média de 28.91°C no ano de 1989 e em 1990, a amplitude térmica foi de de 17,8°C à 38,6°C com temperatura média de 28,25°C.

No período analisado o cultivar METICA-1 apresentou necessidade térmica média de 1.244,73 graus-dia acumulados para o florescimento e 1.802,73 graus-dia acumulados até o final do ciclo.

O cultivar CICA-8 acumulou em média $1.288.75^{\rm o}$ C até o florescimento e $1.858,60^{\rm o}$ C até o final do ciclo.

Estes resultados encontram-se dentro da faixa atribuída por GRIST (1967) à cultivares de ciclo curto (105 à 120 dias).

As diferenças na duração do ciclo entre os cultivares estudados foram decorrentes do período vegetativo, ou seja, a fase que sofreu maior variação foi a fase do início do perfilhamento ao florescimento, como observado por INFELD (1985).

A análise de variância das necessidades térmicas para os dois cultivares durante os três anos analisados, conforme Tabela I, representadas pelos valores de graus-dia acumulados por fase fenológica, mostrou um maior coeficiente de variação para previsão do florescimento e maturação através de dias

do calendário do que para graus-dia acumulados, o que representa ser o método da soma dos graus-dia mais eficiente para essa finalidade.

TABELA 1. Coeficientes de variação entre dias do ciclo e graus-dia acumulados durante o período analisado para os cultivares METICA-1 e CICA-8.

	METICA-1 Florescimento							
-			Ciclo		Florescimento		Ciclo	
anos	Dias	GDA	Dias	GDA	Dias	GDA	Dias	GDA
1988	78	1.228,85	110	1.808,15	81	1.279,20	116	1.855.30
1989	78	1.213,60	113	1.782,35	83	1.296,25	120	1.895.55
1990	80	1.251.75	112	1.817,70	83	1.290,80	116	1.824.95
média	79	1.221,23	112	1.802,73	82	1.288,75	117	1.858.60
s	1,15	10,78	1,53	18,29	1,15	8,71	2.31	35,42
cv	1,47	88,0	1.37	1.01	1.40	0.68	1.97	1.91

CONCLUSÕES

O cultivar METICA-1 floresceu com 1244,73 graus-dia acumulados e até o final do ciclo acumulou 1802,73 graus-dia em média.

O cultivar CICA-8, nessas mesmas condições, apresentou no período analisado, necessidade térmica média de 1288,75 graus-dia acumulados para florescimento e 1858,60 graus-dia acumulados até o final do ciclo.

O método de graus-dia acumulados apresentou menor variação que os dias do calendário na previsão do florescimento e colheita para os dois cultivares.

BIBLIOGRAFIA

DARIO, G.J.A. Informações básicas para o cultivo do arroz, nos sistemas de sequeiro e irrigado no Estado de São Paulo. Piracicaba: Escola Superior de Agricultura "Luiz de Queiróz". Universidade de São Paulo, 1992. 14p.

FERRAZ, E.C. Fisiologia do arroz de sequeiro. In: ___. Cultura do arroz de sequeiro: fatores afetando a produtividade. Piracicaba: Instituto da Potassa e Fosfato, 1983. cap. 2, p.77-94.

GILMORE JUNIOR, E.C., ROGERS, J.S. Heat units as a method of measuring maturity in corn. **Agron.** J., v.50, p.611-5, 1958.

GRIST, D.H. Climate and soils. In: . Rice. London: Longness Group, 1967. p.10-3.

INFELD, J.A., SILVEIRA JÚNIOR, P., ZONTA, E.P. Potencial de produção do arroz irrigado. Campinas: Fundação Cargil, 1985. p. 95-112.

MORAIS, O.P., ANTUNES, F.Z., SOARES, P.C. Exigências climáticas para a cultura do arroz. Inf. Agropecu., v. 5, n.55, p.16-9, 1979.

NEILD, R.E., LOGAN, J., CARDENAS, A. Growing seasons and phenological response of sorghum as determined from simple climatic data. Agric. Meteorol., v.3, p.35-48, 1983.

PEDROSO, B.A. Condições climáticas para cultivar arroz: temperatura. Lav. Arroz., v.33, n.320, p.6-8, 1980.

SOUZA, P.R. Alguns aspectos da influência do clima temperado sobre a cultura do arroz irrigado no sul do Brasil. Lav. Arroz., v.43, n.389, p.9-11, 1990