PARAMETRIZAÇÃO E AVALIAÇÃO DO MODELO DSSAT/CANEGRO PARA VARIEDADES BRASILEIRAS DE CANA-DE-AÇÚCAR

DANIEL SILVEIRA PINTO NASSIF¹, FABIO RICARDO MARIN², WANDER JOSÉ PALLONE FILHO³, RONALDO RESENDE⁴, GIAMPAOLO QUEIROZ PELLEGRINO²

¹Eng. Agrônomo Doutorando em Engenharia de Sistemas Agrícolas – ESALQ/USP, Av. Pádua Dias, 11 – CP 9,
Piracicaba/SP, CEP: 13418-900, e-mail: dspnassif@usp.br

²Pesquisador Embrapa Informática Agropecuária – Campinas/SP

³Pesquisador Centro de Tecnologia Canavieira – Piracicaba/SP

⁴Pesquisador Embrapa Tabuleiros Costeiros – Aracaju/SE

Apresentado no XVII Congresso Brasileiro de Agrometeorologia – 18 a 21 de Julho de 2001 – SESC Centro de Turismo de Guarapari, Guarapari – ES

RESUMO: A modelagem agrícola tem importância por contribuir no planejamento estratégico do setor sucroalcooleiro devido ao aumento de investimentos nesta área. O objetivo do trabalho foi a parametrização e avaliação do modelo para 5 variedades brasileiras de cana-de-açúcar: CTC 4, CTC 7, CTC 20, RB 86 7515 e RB 83 5486. Foram realizadas medidas em campo experimental em duas localidades para as variedades CTC 4, CTC 7, CTC 20 e obtenção de dados bibliográficos para as variedades RB 86-7515 e RB 83-5486. Realizou-se a parametrização do modelo utilizando a técnica GLUE e foi feita a avaliação das cinco variedades estudadas utilizando os índices R², D de Willmott e RMSE. Para a variável de índice de área foliar, as variedades CTC 4, CTC 7, CTC 20 apresentaram índice D variando entre 0,870 e 0,944, sendo com indicadores estatísticos similares para as variáveis altura de colmo (D=0,80), perfilhamento (D=0,90) e teor de sacarose (D=0,50). O modelo apresentou boa capacidade preditiva para a variedade RB 83-5486 para as variáveis de teor de sacarose e massa fresca do colmo. O modelo DSSAT/CANEGRO demonstrou ser uma ferramenta promissora para a simulação dos sistemas produtivos brasileiros quando devidamente parametrizado e validado.

PALAVRAS-CHAVE: simulação, calibração, validação

PARAMETERIZATION AND EVALUATION OF DSSAT/CANEGRO MODEL FOR BRAZILIAN SUGARCANE

ABSTRACT: Crop modelling is important to contribute in the strategic planning of sugarcane crop due to attracting more investments to the sugarcane sector. This research aimed to parameterize and evaluation DSSAT/CANEGRO for 5 Brazilian sugarcane varieties: CTC 4, CTC 7, CTC 20, RB 86 7515 e RB 83 5486. CTC 4, CTC 7 and CTC 20. Experimental data came from two experimental fields in the State of Sao Paulo and RB 86-7515 and RB 83-5486 varieties data came from literature. The model was parameterized using the GLUE method and the evaluation of five varieties was done using R², Willmott's index (D) and RMSE as statistical indicators. D index ranged from 0.870 and 0.944 for green leaf area index for CTC 4, CTC 7 and CTC 20 varieties. The model evaluation was also conducted for the following variables: stalk height (D=0.80), tillering (D=0.90) and sucrose content (D=0.50). The same was done for RB 83-

5486 variety using the following variables: sucrose content and stalk fresh mass. The DSSAT/CANEGRO model proved to be a promising tool for brazilian production systems when properly parameterized and validated.

KEYWORDS: simulation, calibration, validation

Introdução: O aumento da importância da cultura da cana-de-açúcar nos últimos anos, devido a fatores econômicos e ambientais, atraiu investimentos internos e externos para o Brasil, exigindo um planejamento estratégico da expansão da cultura da cana-de-açúcar no país e a pesquisa em modelagem pode contribuir neste sentido. A aplicação de modelos de simulação na agricultura é relativamente mais difundida em países como Austrália, África do Sul e Estados Unidos. No Brasil, porém, o uso de modelos de simulação de crescimento de cana-de-açúcar ainda não é rotina, a despeito da importância sócio-econômica da cultura. O modelo DSSAT/CANEGRO foi baseado no modelo CERES-MAIZE (JONES; KINIRY, 1986) e desenvolvido na África do Sul com o intuito de modelar os processos fisiológicos mais relevantes da indústria açucareira sulafricana (INMAN-BAMBER, 1991). Incluído no conjunto de modelos Decision Support System for Agrotechnology Transfer (DSSAT versão 3.1) (INMAN-BAMBER; KIKER, 1998), e atualizado na versão 4.5 do DSSAT (SINGELS et al., 2008). O DSSAT/CANEGRO vem sendo aplicado em diversas regiões do mundo para análise e avanço no conhecimento dos sistemas de produção de cana-de-acúcar. Quando parametrizado e validado adequadamente, também pode ser empregado como referência, indicando inconsistências em modelos empíricos. O modelo DSSAT/CANEGRO, por ter sido desenvolvido para as variedades sul-africanas, foi inicialmente calibrado com duas variedades para os sistemas de produção de cana-de-açúcar brasileiros (MARIN et al., 2011). Porem é necessário expandir a parametrização e avaliar o modelo para um maior número de variedades brasileiras em diferentes condições, sendo estes os objetivos gerais do presente trabalho.

Material e Métodos: Foram utilizadas cinco variedades de cana-de-açúcar para a parametrização e avaliação do modelo DSSAT/CANEGRO, sendo as mesmas as CTC 4, CTC 7 e CTC 20 com dados coletados dos municípios de Piracicaba e Pradópolis na safra 2009/2010, e quatro conjuntos de dados coletadas por Pellegrino (2001), Silva (2007), Costa et al. (2007) e Rezende (2008)¹. Foram utilizados os dados biométricos de número de perfilhos por metro linear, altura de colmo, número de folhas verdes, índice de área foliar, e diâmetro do colmo. Foram realizadas análises tecnológicas de teor de sacarose (POL%), massa fresca e massa seca (ton ha⁻¹). A parametrização do modelo DSSAT/CANEGRO foi realizada após análise de sensibilidade, e foi baseada nos dados experimentais de Pradópolis para as variedades CTC 4, CTC 7 e CTC 20; dados bibliográficos de Pellegrino (2001) para a variedade RB 83-5486; e dados experimentais da EMBRAPA com a variedade RB 86-7515. Para a determinação de quais parâmetros foram calibrados, utilizaram-se os resultados da análise de sensibilidade para determinação da dependência das variáveis simuladas com a variação em cada parâmetro. Conforme Marin et al.

¹ Dr Ronaldo Rezende, informação pessoal. Dados coletados no âmbito do projeto Produção Sustentável da Cultura da Cana-de-açúcar para Bioenergia em Regiões Tradicionais e de Expansão no Nordeste e Norte do Brasil, financiado pelo Macroprograma 1 da Embrapa.

(2011) nem todos os parâmetros foram calibrados, e os mesmos devem seguir uma taxa de variação que foi definida baseada em dados de campo, literatura referente à cana-de-açúcar e ao manual do modelo (SINGELS et al., 2008). Como método de parametrização, utilizou-se um método objetivo com o intuito de evitar o procedimento subjetivo de tentativa e erro por analise visual. O método de otimização de parâmetros baseado na técnica GLUE (generalized likelihood uncertainity estimation). Nela, a melhor combinação de parâmetros é selecionada comparando as estimativas do modelo com dados de observados em condições de campo. A avaliação do modelo parametrizado foi realizada com dados dos campos experimentais de Piracicaba com as variedades CTC 4, CTC 7 e CTC 20; dados bibliográficos de Costa et al. (2007) para a variedade RB 83-5486; e dados de Silva (2007) com a variedade RB 86-7515. O modelo foi avaliando as seguintes dados de saída: variedades CTC 4, CTC 7 e CTC 20: índice de área foliar, número de perfilhos por m⁻², número de folhas verdes por planta, altura de colmo, teor de sacarose em massa fresca e produtividade; variedade RB 86-7515: massa fresca do colmo, índice de área foliar, altura de colmo, número de perfilhos por m⁻² e massa seca do colmo; variedade RB 83-5486: massa fresca do colmo e teor de sacarose. Para verificação da qualidade da parametrização, foi utilizada a análise de regressão linear e índices R² e D de Wilmott, como também a raiz quadrada do erro médio (RMSE).

Resultados e Discussão: Os valores utilizados na parametrização (Tabela 1) diferem em grande medida dos valores padrão do DSSAT/CANEGRO com a variedade NCo 376. Podemos observar com o parâmetro MXLFAREA, houve aumento de aproximadamente 30% em relação ao padrão, dado que corrobora com Marin et al. (2011) que também encontraram valores para este parâmetro em torno de 50% maior que o padrão. Também verificou-se um decréscimo nos parâmetros MAX_POP e POPTT16, que controlam a população de perfilhos, onde o máximo número de perfilhos ficou em torno de 19 perf m⁻², quase 40% menor do que o padrão, e o número de perfilhos na maturidade em torno de 9 perf m⁻², cerca de 30% menor. No parâmetro de acúmulo de sacarose (SUCA), verifica-se um aumento em todas as variedades brasileiras quando comparadas com a NCo 376 padrão. Já o parâmetro que corresponde à exigência térmica para início do crescimento do colmo das variedades estudadas (CHUPIBASE) apresentou um decréscimo, demonstrando que comparada com a variedade padrão.

Tabela 1 - Valores de parâmetros de cultivares utilizados na parametrização do modelo DSSAT/CANEGRO para as variedades estudadas CTC 4, CTC 7, CTC 20, RB 86-7515, RB 83-5486 e para a variedade padrão NCo 376

Parâmetro	CTC 4	CTC 7	CTC 20	RB 86-7515	RB 83-5486	NCo 376
MaxPARCE	11,99	11,78	12,5	12,86	13,52	9,9
SUCA	0,689	0,69	0,695	0,68	0,695	0,58
LFMAX	9,924	9,969	10,88	9,96	9,518	12
MXLFAREA	500,2	515,6	520,9	500,2	500,9	360
CHUPIBASE	850,2	890,6	850,2	855	547,6	1050
MAX_POP	18,57	16,75	19,5	20,35	19,62	30
POPTT16	9,446	8.995	9,952	8,19	9,556	13,3

Na avaliação do modelo, a variedade RB 86-7515 apresentou R2=0,507 e D=0,743, com RMSE=30,364 ton ha⁻¹ de modo que é mais alto do que comparado com o encontrado por O'Leary (2000) para a variedade NCo 376 um valor de R²=0,73 e RMSE=11,11 ton ha⁻¹). As variedades CTC 4, 7 e 20 e RB 83-5486 apresentaram um resultado de produtividade final próximo ao dado observado em campo. As variedades CTC 4, CTC 7 e CTC 20 apresentaram uma boa correlação com os dados validados, gerando valores de R² (0,976; 0,919 e 0,990, respectivamente) próximos a 1, e com D também elevado (0,944; 0,870 e 0,926, respectivamente). Tais resultados foram melhores que os obtidos por Inman-Bamber (1991), utilizando uma versão preliminar do CANEGRO, com R²=0,43 e D=0,80. Porém, ficaram próximos aos obtidos por Suguitani (2006) com o modelo MOSICAS, com R² > 0,92 para quatro variedades analisadas. Verifica-se também que houve boa correlação entre os dados observados e estimados, para a variável de altura de colmo, com R² entre 0,701 e 0,821 e D entre 0,720 e 0,853. Esses resultados são comparáveis aos obtidos por Suguitani (2006) com o modelo MOSICAS, que obteve com R² > 0,9 para as variedades RB 72-454, R 570, NCo 376 e SP 83-2847. No estudo de Suguitani (2006), entretanto, o RMSE ficou acima de 7,47 m, chegando a 17,1 m na RB 72-454, o que representa mais de 10 vezes o RMSE obtido para as variedades CTC analisadas no presente trabalho. A parametrização da variedade CTC 4 acarretou em atraso na simulação do início do perfilhamento, com pico de perfilhamento ocorrendo aos 120 DAP e estabilizando-se aos 250 DAP, em torno de 9 perfilhos m⁻² coincidindo com dados de Benzuidenhout et al. (2003), mas difere do observado por Suguitani (2006) e Marin et al. (2011) onde as variedades estudadas não apresentaram pico de perfilhamento tão evidente. Apesar disso, houve a correlação e concordância no ajuste entre dados simulados e observados foram R²=0,892 e D=0,800. Na variedade CTC 7, o pico de perfilhamento foi superestimado pelo modelo, porém com aiuste relativamente melhor na fase final de maturação, quando o número de perfilhos estabilizou-se em torno de 8 perfilhos m⁻². Os índices estatísticos demonstram boa correlação entre os dados observados e estimados, com R²=0,721 e D=0,827. A variedade CTC 20 apresentou a melhor correlação (R² = 0,916) e concordância (D=0,951), mas com pequeno atraso em relação aos dados observados. Já a variedade RB 86-7515 apresentou como índices estatísticos R²=0,576 e D=0,873. Para a variável de teor de sacarose em massa fresca (Pol%) os valores de R² ficaram entre 0,506 e 0,807 e RMSE entre 1,437 e 2,611 para as variedades CTC, aproximando-se dos valores encontrados por O'Leary (2000) (R²=0,66 e RMSE=6,07 %) para variedade sul africana NCo 376. O acúmulo de sacarose nas variedades CTC ocorre no segundo terço do ciclo, a partir de quando permanece estável. Isso pode ser uma consequência parcial do tombamento da cultura ocorrido neste período. Diferentemente, a simulação para a variedade RB 83-5486 apresentou um acúmulo contínuo de sacarose até a data da colheita. As variedades CTC apresentaram número de folhas verdes variando de 7 a 8 em seu pico, coincidindo com o encontrado por Suguitani (2006), onde as variedades apresentaram no máximo 9 folhas verdes durante todo o ciclo. Porém, a estimativa da variável pelo DSSAT/CANEGRO apresenta um atraso no surgimento de folhas e isso parece ser decorrente de deficiência no ajuste dos parâmetros de graus-dia para emergência da canaplanta e cana-soca. A variedade CTC 4 apresentou correlação entre os dados (R²=0,944) e concordância (D=0,613). A variedade CTC 20 apresentou índices R2=0,740 e D=0,802. Somente a variedade RB 86-7515 apresentou dados observados para massa seca do colmo e os índices estatísticos obtidos foram R²=0,534, D=0,665 e RMSE=9,51 ton ha⁻¹, estes sendo maiores que obtidos por Singels e Bezuidenhout (2002) (RMSE=5,48 ton ha⁻¹) em simulação para a variedade

NCo 376 na África do Sul. Esses resultados são similares aos encontrados por Marin et al. (2011) para as variedades RB 72-454 e SP 83-2847 (RMSE=9,8 e 9,6 ton ha⁻¹, respectivamente).

Conclusões: O modelo apresentou melhor capacidade preditiva para as variáveis de IAF, altura de colmo, teor de sacarose e produtividade, sendo uma ferramenta promissora quando devidamente parametrizado e validado para os sistemas produtivos brasileiros.

Referências Bibliográficas:

BEZUIDENHOUT, C.N.; O'LEARY, G.J.; SINGELS, A.; BAJIC, V.B. A process-based model to simulate changes in tiller density and light interception of sugarcane crops. **Agricultural Systems**, Amsterdam, v. 76, p. 589-599, 2003.

COSTA, M.C.G.; MAZZA, J.A.; VITTI, G.C.; JORGE, L.A.C. Distribuição radicular, estado nutricional e produção de colmos e de açúcar em soqueiras de dois cultivares de cana-de-açúcar em solos distintos. **Revista Brasileira de Ciência do Solo**, Viçosa, v. 31, p. 1503-1514, 2007. INMAN-BAMBER, N.G. A growth model for sugarcane based on a simple carbon balance and the CERES-Maize water balance. **South African Journal of Plant Soil**, Mount Edgecombe, v. 8 n. 2, p. 93-99, Feb. 1991.

INMAN-BAMBER, N.G.; KIKER, G. **DSSAT/CANEGRO 3.10:** DSSAT version 3.1 1998 Distribuition Software DSSAT/CANEGRO 3.10. DSSAT version 3.1.Honolulu: University of Hawaii, Honolulu, 1998.

JONES, C.A.; KINIRY, J.R. Ceres-Maize: A simulation model of maize growth and development. College Station, Texas A & M University Press, 1986.

MARIN, F.R.; JONES, J.W.; ROYCE, F.; SUGUITANI, C.; DONZELI, J.L.; PALLONE FILHO, W.J.; NASSIF, D.S.P. Parameterization and evaluation of predictions of DSSAT/CANEGRO for sugarcane Brazilian production systems. **Agronomy Journal**, Madison, v. 103, p. 304-315, 2011. O'LEARY, G.J. A review of three sugarcane simulation models with respect to their prediction of sucrose yield. **Field Crops Research**, Amsterdam, v. 68, p. 97-111, 2000

PELLEGRINO, G.Q. Utilização de dados espectrais do satélite NOAA14/AVHRR como fonte de dados para modelos matemáticos de estimativa da fitomassa da cana-de-açúcar. 2001. 133 p. Tese (Doutorado em Engenharia Agrícola) – Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas, 2001.

SILVA, L.C. da. **Crescimento e acúmulo de nutrientes em sete cultivares de cana-de-açúcar** (**Saccharum spp.**) **na região de Coruripe-AL**. 2007. 104 p. Dissertação (Mestrado em Agronomia) - Universidade Federal de Alagoas, Rio Largo, 2007.

SINGELS, A.; BEZUIDENHOUT, C.N. A new method of simulating dry matter partitioning in the DSSAT/CANEGRO sugarcane model. **Field Crops Research**, Amsterdam, v. 78, p. 151-164, 2002.

SINGELS, A.; JONES, M.; VAN DER BERG, M. **DSSAT v.4.5 DSSAT/CANEGRO**: Sugarcane Plant Module; scientific documentation. Mount Edgecombe: International Consortium for Sugarcane Modeling, South African Sugarcane Research Institute, 2008. 34 p. SUGUITANI, C. **Entendendo o crescimento e produção da cana de açúcar: avaliação do modelo Mosicas**. 2006. 60 p. Tese (Doutorado em Fitotecnia) – Escola Superior de Agricultura

"Luiz de Queiroz", Universidade de São Paulo, Piracicaba, 2006.