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ABSTRACT: Dynamic simulation models can increase research efficiency and improve risk 

management of agriculture. Past uses of these models have been criticized in part due to a 

failure of researchers to quantify uncertainties of crop yield prediction. This paper describes a 

stochastic sugarcane process-based model that includes an approach for quantifying 

uncertainty in crop model predictions for regions where it has been parameterized. Classical 

crop model approaches were used as a framework for this model, and fitted algorithms for 

simulating sucrose accumulation and leaf development driven by a source-sink approach were 

proposed. Model was evaluated using data from five growing seasons at four locations in 

Brazil where crops received adequate nutrients and good weed control. Thirteen of the 27 

parameters were optimized using a Bayesian Monte Carlo approach (Generalized Likelihood 

Uncertainty Estimation - GLUE) algorithm. GLUE was also used to estimate parameters 

correlations, and the mean parameter values and the covariance matrix were inputs for 

Toeplitz-Cholesky factorization to generate correlated random variable samples. The 

correlated random variable approach based on the Toeplitz-Cholesky factorization showed an 

interesting reduction on the uncertainty of simulations compared with a typical stochastic 

Monte Carlo simulation. Deterministic model predictions well simulated the sugarcane crop in 

Southern Brazil, using the parameterization reported here. Predictions were best for stalk dry 

mass (RMSE=5.38 t ha
–1

; Eff=0.83), followed by leaf area index (RMSEP=0.85 m
2
 m

–2
; 

Eff=0.70) and then sucrose content in stalk fresh mass (RMSEP=1.17 %; Eff=0.56). 
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RESUMO: Modelos de simulação dinâmica do crescimento de plantas podem aumentar a 

eficiência da pesquisa e melhorar a gestão de risco na agricultura. Usos anteriores deste tipo 

de ferramenta modelos têm sido criticados em parte por uma falha na quantificação das 

incertezas da previsão de produtividade das culturas. Este artigo descreve um modelo 

estocástico baseado em processos para cana-de-açúcar que inclui uma abordagem para a 

quantificação da incerteza em simulações de crescimento e produtividade. Abordagens 

clássicas de processos bem estudados em conjunto com algoritmos desenvolvidos para 

simulação do acúmulo de sacarose e desenvolvimento foliar baseado numa abordagem fonte-

dreno. Modelo foi avaliado utilizando dados de cinco experimentos em quatro locais no 

Sudeste do Brasil, com nutrição adequada e bom controle de plantas daninhas. Treze dos 27 

parâmetros foram otimizados usando uma abordagem bayesiana de simulação por Monte 



 
 

 

Carlo (GLUE). O GLUE também foi utilizado para estimar as correlações entre os parâmetros 

a matriz de covariância, que foram insumos para a fatorização de matrizes segundo Toeplitz-

Cholesky para geração de amostras aleatórias correlacionadas. Esta abordagem resultou numa 

redução interessante na incerteza das simulações em comparação com uma simulação 

estocástica típica usando Monte Carlo. Simulações do modelo determinístico foram 

adequadas para o Sudeste do Brasil com a parametrização obtida. As previsões foram 

melhores para massa seca de colmos (RMSE = 5,38 t ha
-1

; Eficiência=0,83), seguido pelo 

índice de área foliar (RMSEP=0,85 m
2
 m

-2
; Eficiência=0,70) e, em seguida, teor de sacarose 

no colmo (RMSEP=1,17%; Eficiência=0,56). 

 

PALAVRAS-CHAVE: modelagem, variáveis aleatórias correlacionadas, matriz de 

covariância, incerteza.  

 

INTRODUCTION 

 

Dynamic simulation models can increase research efficiency by allowing the analyst to search 

for strategies and analyze system performance, improve risk management, and interpret field 

experiments that deal with crop responses to soil, management, genetic or environmental 

factors (Keating et al., 1999). Sugarcane (Saccharum spp.) is of major social and economic 

importance in Brazil (Goldemberg, 2007). Worldwide, there have been several models 

developed specifically for sugarcane crop simulation (Pereira and Machado, 1986; Langellier 

and Martine, 2007; Keating et al., 1999; Inman-Bamber, 1991).  

Most of these models are based on a range of concepts described in Jones et al. (2003), and 

they balance the need for comprehensive description of the observed variation in crop 

performance over diverse environments and the need to avoid excessive complexity with large 

numbers of difficult to measure parameters (Keating et al., 1999). Recent literature contains 

relatively little work on parameter estimation for crop models. Makowski et al. (2006) point 

out the importance of raising the quality of calibration in crop models with automatic 

procedures for parameter adjustment. Also, crop models are increasingly being used for 

different purposes including evaluation of climate change impacts on crop yields and 

opportunities for adapting management to future conditions. However, past uses of these 

models have been criticized in part due to a failure of researchers to quantify uncertainties of 

crop yield prediction 

A new sugarcane model was developed that builds on well-tested relationships used in 

existing models, adding new features (such as for photosynthesis, leaf development driven by 

a source-sink approach, and sucrose accumulation algorithms) based on recent literature and 

experiments. This new model also incorporates a stochastic approach using correlated random 

variables and an objective calibration procedure based on Generalized Likelihood Uncertainty 

Estimator (GLUE) to ensure consistent and reliable adaptation of the model for applications in 

Brazil. The purpose of this paper is to describe the functional basis of this stochastic model 

and to evaluate it for Southern Brazil, with a diverse range of planting dates, soils and water 

availability. 

 

MATERIAL AND METHODS 



 
 

 

The model simulates sugarcane growth and development using process-based 

algorithms including phenology, canopy development, tillering, biomass accumulation and 

partitioning, root growth, and water stress. State variables (Table 1) are updated using Euler 

integration with a one-day time step. The model is designed to simulate the entire plant, stalk 

and root biomass, sucrose concentration, plant phenology and other variables. The model 

requires soil parameters that regulate the soil water balance (field capacity, wilting point, 

water saturation, and soil depth), daily weather variables (solar radiation, maximum and 

minimum temperatures, precipitation), and irrigation. The model engine and modules are 

coded in FORTRAN 90 because this language continues to be the predominant programming 

language of simulation modeling in agriculture and due to the ease of obtaining available free 

code for specific algorithms used in this model.  

 
Table 1. Model state variables, descriptions, units and categories. 
State Variables Description Units Category 

NSTK Number of stalks per area unit stalk m-2 Phenology 

LN Number of green leaves per stalk Leaves stalk-1 Leaf Development 
LNTOTAL Number of green plus dead leaves per stalk Leaves stalk-1 Leaf Development 

LA Leaf area m2 Leaf Development 

W total plant dry matter weight  ton ha-1 Photosynthesis 
WA aerial dry matter weight  ton ha-1 Biomass accumulation 

WR root dry matter weight  ton ha-1 Biomass accumulation 

WSDM stalk dry matter weight  ton ha-1 Biomass accumulation 
WSFM stalk fresh matter weight  ton ha-1 Biomass accumulation 

WL leaf dry matter weight  ton ha-1 Biomass accumulation 

WSUC Sucrose weight  ton ha-1 Sucrose accumulation 
SLENG Stalk length  m Plant extension 

RLD Root length density for L layer cm cm-3 Root and water stress 

SWCa actual soil water storage in the profile  mm Soil Water 

The model was parameterized and evaluated using plant cane and first ratoon data 

from the SP83-2847 cultivar, collected in four locations in Southern Brazil. The experimental 

data were collected and measurement frequency are fully described in Marin et al. (2011) 

(Table 2). All experiments received adequate N, P and K fertilization and regular weed 

control and were planted using healthy cuttings with 13 to 15 buds m–2. Row spacing varied 

from 1.4 m to 1.5 m. One of the datasets had two treatments (irrigated and rainfed), and all the 

remaining experiments were rainfed.  

The generalized likelihood uncertainty estimate (GLUE) (Beven and Binley, 1992; 

Franks et al., 1998; Shulz et al., 1999) method was used for the crop model optimization to 

determine the best set of parameters from such a number of samples. GLUE was also use to 

generate the covariance matrix of model parameters, which in turn was used to generate the 

correlated random variables through the Toeplitz-Cholesky factorization.  

 

Table 2. Overview of experimental data from cultivar SP83-2847, soil and climate 

characteristics of each experiment site.  
Dataset Site Planting and 

Harvest Dates 

Crop 

Cycle
1
 

Climate
2
 Treatments 

1 
Piracicaba/SP, 22º52’ S, 

47º30’ W, 560m asml 

29 Oct 2004 and 

26 Sept 2005 
PC 

21.6 
o
C, 

1230mm, 

CWa 

1) Irrigated, 

2) Rainfed 

2 

Aparecida do Taboado/MS, 

20º05’19” S, 51º17’59” W, 

335m asml 

1 July 2006 and  

8 Aug 2007 
R1 

23.5 
o
C, 

1560, Aw 
3) Rainfed 



 
 

 

3 
Colina/SP, 20°25’ S 

48°19’ W, 590m asml 

10 Feb 2004 and 

15 June 2005 
PC 

22.8 
o
C, 

1363mm, 

Aw 

4) Rainfed 

4 
Olimpia/SP, 20°26’ S, 48°32’ 

W, 500m asml 

10 Feb 2004 and 15 

June 2005 
PC 

23.3 
o
C, 

1349mm, 

Aw 

5) Rainfed 

1
 PC - Plant cane crop; R - ratoon crop and following number is the ratoon rank; 

2
 Respectively: mean annual 

temperature, annual total rainfall, Koeppen Classification. 
 

 

 

RESULTS AND DISCUSSION 

 

Running the model under a deterministic approach, simulations for stalk dry mass well 

compared with Singels and Bezuidenhout (2002), or O’Leary (2000) and Marin et al. (2011) 

using several versions of CANEGRO for simulations or values from Cheeroo-Nayamuth et al. 

(2000) using the APSIM-Sugar model to simulate sugarcane growth in Mauritius. We found 

RMSEP=5.38 t ha
–1

 and modeling efficiency (eff)=0.85 (Fig. 1). Uncertainties in crop 

parameters resulted in variations in simulated stalk dry mass and sugar content (POL), but this 

uncertainty was variable among the evaluated sites (Fig. 2). Matter to highlight that Aparecida 

Taboado being the hotter and dryer site compared to Piracicaba. For the boundary conditions 

used here, the variability in stalk dry mass was generally higher than the variability obtained 

for sucrose content (Fig. 3). Percent deviation for stalk dry mass showed a 32.9% probability 

that the deviation in sugar content was greater than 20%. 

 

 
Figure 1, Time variation of observed and deterministically simulated stalk dry mass for five 

datasets of cultivar SP83-2847 in Southern Brazil. 

 



 
 

 

 
Fig. 2. Time variation of observed and stochastically simulated stalk dry mass for five datasets 

of cultivar SP83-2847 in Southern Brazil. 

 
Fig. 3. Time variation of observed and stochastically simulated sugar content in the stalk 

(POL%) for five datasets of cultivar SP83-2847 in Southern Brazil. 

 

CONCLUSIONS 
 

This model provided a reasonable explanation of the growth of the experiments analyzed. The 

calibration using GLUE coupled with the cross-validation technique permits the use of diverse 

datasets that would be difficult to use separately because of the heterogeneity of 

measurements and measurement strategies. Using the calibration proposed, the model 

deterministically well simulated sugarcane growth and production under water-limited and 

irrigated conditions in Southern Brazil. The correlated random simulation seems useful to 

include the uncertainty in the crop growth and yield estimates, and the use of correlated 

random approach reduces the uncertainty in respect of model structure and parameter 

meaning. The uncertainty varies with the environment. 
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