DISTRIBUIÇÃO ESPACIAL DE UNIDADES TÉRMICAS NO ESTADO DO CEARÁ – BRASIL

Joaquim Branco de OLIVEIRA¹, Márcio J. CATALUNHA¹, Marcos Oliveira SANTANA¹

Gilberto Chohaku SEDIYAMA²

RESUMO

Estudos bioclimáticos têm sido conduzidos para comparação do crescimento e

desenvolvimento dos vegetais com um simples elemento ambiental, sendo a temperatura do ar

utilizada na maioria dos estudos. Utilizando-se dos registros de temperatura máxima e mínima de

15 estações climatológicas do Estado do Ceará e de 11 estações de estados circunvizinhos, em

períodos que variaram de 6 a 16 anos, calculou-se as "Unidades Térmicas" médias mensais e os

totais médios trimestrais, pelo método descrito por CROSS e ZUBER para cada localidade.

Aplicou-se uma ferramenta de Sistema de Informação Geográfica para gerar mapas, com a

resolução de 500 x 500m, das Unidades Térmicas.

Palavras-chave: Unidades Térmicas, SIG, Agrometeorologia.

INTRODUÇÃO

A temperatura, um dos elementos meteorológicos, é a forma mais simples de expressar a

energia que contida no ambiente influindo no crescimento, desenvolvimento e distribuição das

espécies vegetais. Essa energia, importante para os estádios fenológicos das plantas, tem sua

contabilidade à disposição da mesma determinada pelas Unidades Térmicas (SANTOS, 1991).

O conhecimento das disponibilidades térmicas de um local é necessário em várias

atividades agronômicas, como a seleção e introdução de cultivares e a definição de épocas de

plantio (ESTEFANEL et al., 1994). Dentre os vários que têm sido propostos para avaliar a relação

entre as plantas e o meio ambiente, destacam-se os Sistema de Unidades Térmicas.

¹ Mestrando em Meteorologia Agrícola - UFV

² Prof. Titular do Departamento de Engenharia Agrícola - UFV

A utilização desses sistemas permitem elaborar calendários de plantio, predizer as fases fenológicas das culturas, a aplicação de tratos culturais e o planejamento da irrigação.

No Ceará, onde predomina o clima semi-árido, em cujo volume e distribuição das chuvas são irregulares, a utilização e interpretação destes sistemas relativamente simples poderão contribuir para o uso racional dos recursos edafo-climáticos contribuindo para a viabilidade da agricultura na região.

O objetivo deste trabalho foi estudar a distribuição espacial e temporal das Unidades Térmicas do Estado do Ceará visando subsidiar o planejamento agrícola.

MATERIAL E MÉTODOS

Foram utilizados dados diários de temperaturas máximas e mínimas do ar para 15 localidades do Estado do Ceará e mais 11 localidades dos Estados do Rio Grande do Norte, Pernambuco e Piaui (TABELA 1). Os dados dos Estados vizinhos foram utilizados como condição de contorno na espacialização das Unidades Térmicas.

TABELA 1: Posição geográfica dos locais estudados.

Local	Estado	Latitude	Longitude	Altitude
Acarau	CE	-2,89	-40,12	7,3
Apodi	RN	-5,66	-37,80	67,8
Aracati	CE	-4,56	-37,77	5,8
Barbalha	CE	-7,31	-39,30	415,0
Campos Sales	CE	-7,07	-40,38	566,3
Crateús	CE	-5,18	-40,68	274,7
Florania	RN	-6,13	-36,82	315,8
Fortaleza	CE	-3,72	-38,54	21,1
Guaramiranga	CE	-4,26	-38,93	900,0
Iguatú	CE	-6,36	-39,30	217,2
Jaguaruana	CE	-4,83	-37,78	12,1
Juazeiro de Norte	CE	-7,21	-39,31	377,3
Monteiro	PB	-7,89	-37,12	599,2
Morada Nova	CE	-5,11	-38,37	52,0
Morro dos Cavalos	PI	-7,51	-41,54	242,0
Mossoró	RN	-5,19	-37,34	16,9
Ouricuri	PE	-7,88	-40,08	451,5
Patos	PB	-7,02	-37,28	242,5
Paulistana	PI	-8,14	-41,15	359,6
Picos	PI	-7,08	-41,47	206,4
Quixadá	CE	-4,97	-39,01	190,0
Quixeramobim	CE	-5,18	-39,29	191,7
São Gonçalo	PB	-6,45	-38,13	233,0
Sobral	CE	-3,69	-40,35	69,4
Tauá	CE	-6,00	-40,29	402,6
Triunfo	PE	-7,84	-38,10	1004,4

Os dados de temperaturas máxima e mínima diárias do ar observados nas localidades, referem-se a períodos que variam de 8 a 16 anos, entre 1961 e 1978, obtidos junto ao Instituto Nacional de Meteorologia.

Para calcular as unidades térmicas acumuladas diariamente aplicou-se o método descrito por CROSS e ZUBER (1971), equações 1 e 2.

$$UT = \frac{H' + L'}{2}$$
 (Eq. 1)

UT: unidades térmicas acumuladas diariamente (°C);

H': H, se H for menor que 30 °C;

$$H'=30-(H-30)$$
, para H maior que 30 °C(Eq.2)

L' = L se L for maior que 10 °C;

L' = 10° C, se L for maior que 10° C.

H: temperatura máxima diária do ar (°C);

L: temperatura mínima do ar (°C)

Utilizando o software Idrisi com as seguintes características: dados tipo inteiro, arquivos tipo binário com 1218 colunas e 1137 linhas com sistema de coordenada geográfica (latitude e longitude), sendo os limites -2,7 e -8,0 de latitude Sul e -36,0 e -41,5 de longitude Oeste e resolução de 500 em 500m.

RESULTADOS E CONCLUSÕES

Com base nos dados, foram confeccionados mapas de Unidades Térmicas de média mensal e total médio trimestral (FIGURAS 1 a 4).

FIGURA 1: Totais médios de unidades térmicas do trimestre janeiro – março (a) e abril – junho (b).

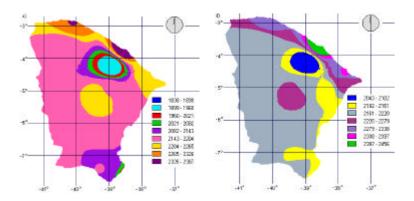


FIGURA 2: Totais médios do trimestre de unidades térmicas julho – setembro (a) e outubro dezembro (b)

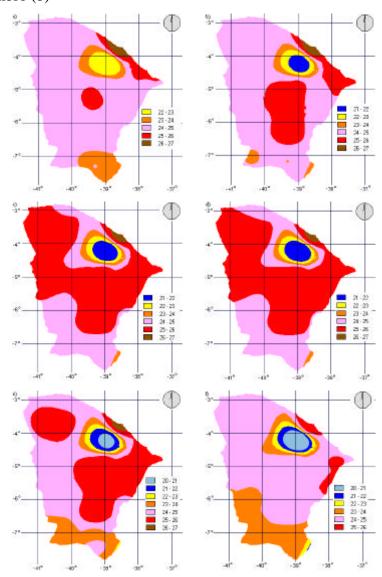


FIGURA 3: Média mensal de unidades térmicas de janeiro (a), fevereiro (b), março (c), abril (d), maio (e) e junho (f).

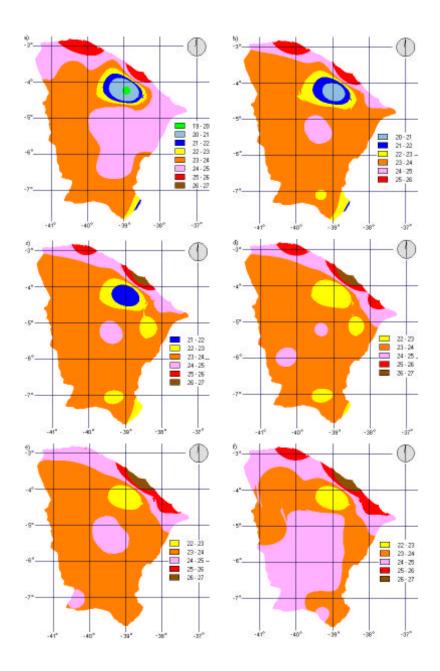


FIGURA 4: Média mensal de unidades térmicas de julho (a), agosto (b), setembro (c), outubro (d), novembro (e) e dezembro (f).

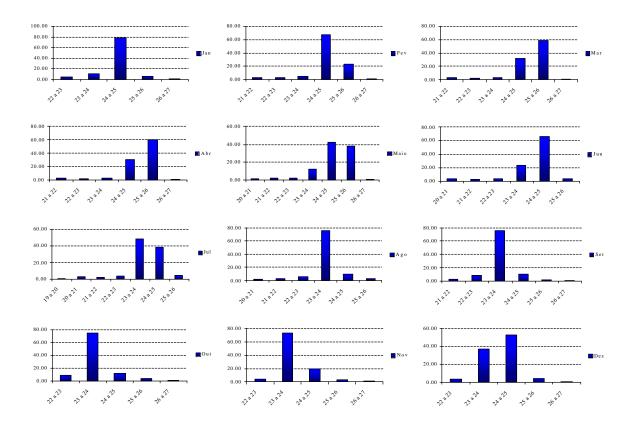


FIGURA 5: Histograma de frequência das unidades térmicas médias mensais

CONCLUSÕES

- a) Os valores médios totais trimestrais de unidades térmicas foram de 2.165 a 2.275 em 82,57% da área do Estado no primeiro trimestre, 2.209 a 2.321 em 74,90% da área no segundo, 2.143 a 2.265 em 77,8% da área no terceiro e 2.102 a 2.161 em 77,01 % da área no quarto.
- b) Analisando a média diária mensal de unidades térmicas verifica-se que entre os meses de fevereiro a maio, mais de 80% da área do Estado apresenta valores de 24 a 26 UT enquanto que no período compreendido entre junho e janeiro , mais de 85% da área do Estado apresenta valores de 23 a 25 UT
- c) Oss valores mais baixos de unidades térmicas estão localizados na região norte do Estado.
 Exatamente em regiões de altitudes elevadas, como era esperado.

BIBLIOGRAFIA

- CROSS, H. Z., ZUBER, M. S. Prediction of flowering dates in maize based on different methods of estimting thermal units. **Agronomy Juornal**, n. 64, p. 435 442, 1972.
- ESTEFANEL, V., SCHNEIDER, F. M., BURIOL, G. A. Probabilidade de ocorrência de temperaturas máximas do ar prejudiciais aos cultivos agrícolas em Santa Maria –RS. **Revista Brasileira de Agrometeorologia**, v. 2, p. 57 63, 1994.
- SANTOS, O. C. O. Distribuição espacial e temporal das unidades térmicas para a região amazônica. In: CONGRESSO BRASILEIRA DE AGROMETEOROLOGIA, 7, Viçosa, 1991. **Anais...** Viçosa: Sociedade Brasileira de Agrometeorologia, 1991, p. 130 132.