EQUAÇÕES DE ESTIMATIVA ANUAL, SAZONAL E MENSAL DA RADIAÇÃO SOLAR DIRETA NA INCIDÊNCIA NORMAL

E.N. Gomes¹, J.F. Escobedo²

Eng^o Agrônomo, Pós-Doutorando, bolsista PDJ-CNPq, Depto. de Rec. Naturais, FCA/UNESP, Botucatu – SP, engomes@fca.unesp.br
Físico, Prof. Dr, Depto. de Recursos Naturais, FCA, UNESP, Botucatu - SP, Fone: (0 xx 14) 3811 7162, escobedo@fca.unesp.br.

Apresentado no XVI Congresso Brasileiro de Agrometeorologia – 22 a 25 de setembro de 2009 – GranDarrell Minas Hotel, Eventos e Convenções - Belo Horizonte, MG.

RESUMO: No trabalho é apresentada a proposta e a validação do modelo estatístico de Liu & Jordan Anual, Sazonal e Mensal para estimativa diária da radiação direta na incidência. Os resultados mostram que: A equação de estimativa anual com R^2 = 0,9120, pode estimar a radiação direta na incidência diária em função de Kt com MBE =-1,13MJm⁻², RMSE = 3,49MJm⁻², e o índice de ajustamento d=0,97; As equações de estimativa sazonal da radiação direta na incidência diária, com R^2 entre 0,8772 (Verão) e 0,9281 (Inverno) podem estimar Kb em função de Kt com MBE entre -0,51MJm⁻² (Verão) a -1,73MJm⁻² (Primavera), RMSE entre 3,34MJm⁻² (Inverno) e 3,85MJm⁻² (Verão) e elevado índice de ajustamento (superior a 0,96); As equações mensais de estimativa diária da radiação direta na incidência apresentaram elevados coeficientes de determinação entre 0,8472 (Fevereiro) e 0,9437 (Setembro) com MBE entre 0,22 MJm⁻² (Junho) a -2,45MJm⁻² (Setembro), RMSE entre 2,57MJm⁻² (junho) a 4,68MJm⁻² (Março), e elevado índice de ajustamento superior a 0,930.

PALAVRAS-CHAVE: radiação solar, estimativa, direta na incidência.

ANNUAL, SEASONAL AND MONTHLY ESTIMATIVE EQUATIONS OF SOLAR BEAM

ABSTRACT: In this work is proposed in the statistical model of Liu & Jordan Annual, Seasonal and Monthly to estimate daily solar beam and the validation of models by means of statistical indicators MBE, RMSE and d-Willmott. The results show that: The equation to annual estimative, second-order polynomial, with $R^2 = 0.9120$, can estimate the daily solar beam with MBE =1.13MJm⁻², RMSE = $3.49MJm^{-2}$, and with index of adjustment d = 0.97. The Seasonal Equations to estimate daily direct beam, with R^2 from 0.8772 (Summer) to 0.9281 (Winter) can subestimate the direct beam with MBE from -0.51MJm⁻² (Summer) to -1.73MJm⁻² (Spring), RMSE from $3.34MJm^{-2}$ (Winter) to $3.85MJm^{-2}$ (Summer) with index of adjustment d= 0.96; The Monthly Equations to estimate daily solar beam showed determination coefficients from 0.8472 (February) to 0.9437 (September) with MBE from $0.22 MJm^{-2}$ (June) to $-2.45MJm^{-2}$ (September), RMSE from $2.57MJm^{-2}$ (june) to $4.68MJm^{-2}$ (March), with index of adjustment higher than 0.930.

KEYWORDS: solar radiation, estimative, solar beam.

1. INTRODUÇÃO: Atualmente, o Brasil encontra-se em pleno desenvolvimento científico e tecnológico na busca de fontes alternativas e renováveis de energia. A radiação solar apresenta grande destaque neste contexto, principalmente na conversão da radiação solar para aplicações térmicas, fotovoltaicas, na produção biomassa e biodiesel, entre outras.

O monitoramento das radiações solares nas Universidades é restrito à global, difusa, PAR e ondas longas (Cavalcanti, 1991; Oliveira et al., 2002; Souza et al., 2005; Tiba et al., 2005;

Escobedo et al., 2009). Escassas são as informações sobre equações de estimativas da radiação direta na incidência em função da global. A causa principal dessa limitação dos grupos está no custo instrumental e de manutenção do pireliômetro e rastreador solar que é importado e caro.

A radiação solar direta na incidência é uma fração da radiação solar global e possui aplicações em diversas áreas, e os modelos de estimativa são uma alternativa de grande importância, pois podem ser utilizados em projetos de simulação da radiação solar em outros locais de características climáticas similares. Assim, objetivou-se no trabalho Propor equações Anual, Sazonal e Mensal de estimativa diária da radiação direta na incidência a estimativa diária da radiação direta na incidência utilizando-se do modelo de Liu & Jordan (1961).

2. MATERIAL E MÉTODOS: A Estação de Radiometria Solar de Botucatu está inserida em ambiente rural na Faculdade de Ciências Agronômicas da UNESP de Botucatu (latitude 22,85°S, longitude 48,45°O e altitude 786m), e monitora de rotina a radiação solar: global e direta na incidência, desde 1995. O clima local é classificado como Cwa (critérios de KÖPPEN), temperado quente (mesotérmico), o verão é quente e úmido e o inverno é seco.

O banco de dados de radiação solar utilizado na geração das equações de estimativas compreende os anos 1996 a 2005 e os anos de 2006 e 2007 foram utilizados na validação. Foram eliminados do banco de dados os dias em que houve paralisação de pelo menos um dos radiômetros devido a problemas elétricos, calibração, etc. A irradiância global foi monitorada por um piranômetro Eppley PSP enquanto a direta na incidência por um pireliômetro Eppley NIP, acoplado a um rastreador solar ST3 da Eppley. Na aquisição dos dados foi utilizado um Datalogger da Campbell CR23X operando na freqüência de 1 Hz. As radiações diárias em MJ m² foram calculadas a partir da integração diária das irradiâncias global, e direta em W m⁻² determinando-se as radiações diárias: global (H_G), direta na incidência (H_b).

Na modelagem Anual, Sazonal e Mensal estabeleceu-se correlações entre o índice de claridade (Kt) (transmissividade atmosférica da radiação global) com a fração direta na incidência da radiação no topo da atmosfera na incidência (Kb). Estas frações estão representadas pelas relações:Kt= H_G/H_o , e Kb= H_b/H_{ob} , respectiva,mente, onde H_G é a radiação global, H_o é a radiação no topo da atmosfera, H_b é a radiação direta na incidência e H_{ob} é a radiação no topo da atmosfera, calculada de acordo com Iqbal, 1983.

As equações Anual, Sazonais e Mensais de estimativa diária da radiação direta na incidência foram ajustadas por meio de regressão polinomial de segundo grau nas correlações entre Kb e Kt. Na validação dos modelos propostos utilizou-se dos indicativos estatísticos MBE, RMSE e índice de ajustamento "d" como alternativa adequada para validação de modelos estatísticos, pois permite análise simultânea do desvio da média, identificando a ocorrência de sub ou superestimativa, espalhamento e ajustamento do modelo em relação as medidas. Na validação sazonal comparou-se o desempenho das equações Sazonais contra a equação Anual, enquanto que na modelagem Mensal comparou-se o desempenho das equações Mensais contra a equação Anual.

3. RESULTADOS E DISCUSSÃO: A Figura 1 mostra as correlações Sazonais (Fig. 1(a) a 1(d)), e Mensais (Fig. 1 (e) a 1 (p)) entre Kb e Kt diários de 10 anos (3370 dias), e as equações polinomiais ajustadas. Em todas as correlações, nota-se que a fração Kb cresce no sentido que Kt aumenta, e a variação de Kb para um valor fixo de Kt é elevado, resultando no grande espalhamento da correlação. Segundo Olmo et al., (1996), este elevado espalhamento de Kb, se deve a demais variáveis além Kt, que são dependentes das condições locais e não foram contabilizadas na estimativa.

Figura 1. Correlações Sazonais e Mensais de Kb e Kt para os anos de 1996 a 2005

Os elevados coeficientes de determinação (R^2) das equações sazonais indicam que cerca de 90% da variação de Kb foi explicada por Kt. Os melhores ajustes ocorreram nas estações do ano de maior estabilidade atmosférica (inverno e primavera), enquanto que os piores ajustes ocorreram nas estações sujeitas a maiores nebulosidades (verão e outono).

Para equações de estimativas mensais, os R^2 também foram elevados, contudo os valores foram inferiores aos obtidos para as equações sazonais. Para os meses de janeiro a abril e dezembro os R2 foram ligeiramente inferiores a 0,90, enquanto nos demais meses foram superiores, indicando que os maiores espalhamentos ocorreram nos meses de alta nebulosidade.

Diversos autores obtiveram resultados semelhantes: em Marrocos, Rerhrhaye et al., (1995), obtiveram R^2 entre 0,90 e 0,91; na Espanha, Olmo et al., (1996) encontraram R^2 entre 0,89 e 0,62; em Hong Kong, Lam & Li (1996) encontraram R^2 entre 0,912 na estação fria, e 0,988 no modelo anual.

A Figura 2 mostra os resultados da validação das equações por meio dos indicativos estatísticos MBE, RMSE e d para a modelagem sazonal (Fig. 2a a 2c) e para a modelagem mensal (Fig 2d a 2f). Todas as equações de estimativa em geral subestimaram os valores experimentais em até 2MJm⁻² na modelagem sazonal e 3MJm⁻² na modelagem mensal, assim como apresentaram espalhamentos inferiores a 4MJm⁻² na modelagem sazonal e 5MJm⁻² na modelagem sazonal e acima de 0,96 na modelagem sazonal e acima de 0,93 na mensal).

No comparativo entre as modelagens Anual e Sazonal, somente as equações sazonais do outono e inverno foram melhores na estimativa, enquanto que na primavera e verão a equação anual apresentou melhores resultados nos indicativos estatísticos. Já no comparativo entre as modelagens Anual e Mensal, as equações mensais mostraram-se mais adequadas a estimativa diária da radiação direta na incidência nos 6 meses do período de março a agosto, sendo que a equação anual apresentou melhores resultados nos indicativos estatísticos de validação nos meses de setembro a fevereiro.

Período	$Kb = \sum_{i=0}^{2} a_{i} (Kt)^{i}$			
	a_0	a_1	a_2	R^2
Primavera	0,06873	-0,65763	1,73384	0,9139
Verão	0,04772	-0,5407	1,62508	0,8772
Outono	0,05362	-0,63783	1,8209	0,9076
Inverno	0,07928	-0,78447	1,96744	0,9281
Janeiro	0,04125	-0,52067	1,60709	0,8901
Fevereiro	0,05824	-0,5773	1,64197	0,8472
Março	0,02748	-0,49937	1,6406	0,8988
Abril	0,03455	-0,53413	1,69586	0,8880
Maio	0,05115	-0,59071	1,77149	0,9229
Junho	0,06272	-0,72858	1,94819	0,9052
Julho	0,07755	-0,77087	1,96257	0,9233
Agosto	0,09427	-0,8624	2,05283	0,9245
Setembro	0,06915	-0,70303	1,8221	0,9437
Outubro	0,0669	-0,66512	1,74309	0,9108
Novembro	0,0888	-0,76218	1,84575	0,9098
Dezembro	0,06304	-0,59047	1,6486	0,8985
Anual	0,06906	-0,69564	1,84159	0,9120

Tabela 1. Coeficientes de regressão dos modelos de estimativa diária de Kb em função de K^d_t e coeficientes de determinação no modelo de Liu & Jordan

Figura 2. Resultados da validação das equações por meio dos indicativos estatísticos MBE, RMSE e d.

4. CONCLUSÕES: As equações de estimativa sazonais apresentaram R^2 variando entre 0,8772 (Verão) e 0,9281 (Inverno), e as mensais, apresentaram R^2 entre 0,8472 (Fevereiro) e 0,9437 (Setembro), mas em geral inferiores aos das equações sazonais. Os melhores

resultados sazonais ocorreram nas estações do ano de maior estabilidade atmosférica (inverno e primavera), e os piores ajustes ocorreram nas estações sujeitas a maiores nebulosidades (verão e outono). Nos indicativos estatísticos, em geral todas as equações apresentaram subestimativas das medidas experimentais: As equações de estimativa sazonal da radiação direta na incidência diária, podem estimar com MBE entre -0,51MJm⁻² (Verão) a -1,73MJm⁻² (Primavera), RMSE entre 3,34MJm⁻² (Inverno) e 3,85MJm⁻² (Verão) e elevado índice de ajustamento (superior a 0,96); 3) As equações mensais de estimativa diária da radiação direta na incidência apresentaram com MBE entre 0,22 MJm⁻² (Junho) a -2,45MJm⁻² (Setembro), RMSE entre 2,57MJm⁻² (junho) a 4,68MJm⁻² (Março), e elevado índice de ajustamento superior a 0,930.

AGRADECIMENTOS

À FAPESP, e ao CNPq pelo apoio financeiro.

5. REFERÊNCIAS BIBLIOGRÁFICAS:

CAVALCANTI, E.S.C. Analysis of experimental solar radiation for Rio de Janeiro, Brazil. **Solar Energy**, v.47, p.231-235, 1991.

ESCOBEDO, J ; GOMES, E ; OLIVEIRA, A ; SOARES, J ., 2009. Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Appl. Energy, **86**, 299-309

IQBAL, M., 1983. An introduction to solar radiation. Canada: Academic Press, 390 págs. LAM, J.C., LI, D.H.W. Correlations between global solar radiation and its direct and diffuse components. **Building and Environment**, v.31, p.527-35, 1996.

LIU, B. Y. H., JORDAN, R. C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. **Solar Energy**, v.3, n.4, p.1-19, 1960.

OLIVEIRA, A.P., ESCOBEDO, J.F., MACHADO, A.J., SOARES, J. Correlation models of diffuse-solar radiation applied to the city of São Paulo, Brazil. **Applied Energy**, v.71, p.59-73, 2002.

OLMO, F.J., BATLLES, F.J., ALADOS-ARBOLEDAS, L. Performance of global to direct/diffuse decompotion models before and after the eruption of mt. Pinatubo. June 1991. **Solar Energy**, v.57, p.433-43, 1996.

RERHRHAYE, A., ZENAF, M., FLECHON, J. Estimation of the beam from seasonal correlations. **Renewable. Energy**, v.6, p.779-785, 1995.

SOUZA, J.L., NICÁCIO, R.M., MOURA, M.A.L. Global solar radiation measurements in Maceió, Brazil. **Renewable Energy**, v.30, p.1203-1220, 2005.

TIBA, C. AGUIAR, R., FRAIDENRAICH, N. Analysis of a new relationship between monthly global irradiation and sunshine hours from a database of Brazil. **Renewable Energy**, v.30, p.957-966, 2005.

WILLMOTT, C.J. On the validation of models. Physical Geography. v.2, p.184-94, 1981.