NET RADIATION IN THE NORTHEAST REGION OF BRAZIL

Kamada Karuna Kumar¹, Tantravahi Venkata Ramana Rao¹, Wagner de Aragão Bezerra² e Josefa Morgana Viturino de Almeida²

ABSTRACT - For many climatological studies net radiation at the earths surface is necessary. Measured values of this parameter are not often available. Mean monthly values of net radiation at some stations in NE Brazil evaluated using Morton's (1983) procedure are reported in this paper. The maximum and minimum values of net radiation noticed are 393 and 166 cal cm² min⁻¹.

INTRODUCTION

Net radiation is an important parameter in several methods of estimating water loss from the surface. Measured net radiation data is not often available. Linacre (1968) has suggested several equations for computing of net radiation. Karuna Kumar and Rao (1985) have used these procedures for studying the spatial distribution of net radiation in India. In many parts of NE region of Brazil net radiation data is not available. The objective of this study is to estimate the net radiation at some stations in this region based on Morton's (1983) approach.

MATERIALS AND METHODS

Mean monthly values of air temperature, vapour pressure and incoming solar radiation at twenty eight stations in different parts of NE region of Brazil were used in this study.

The zenith value of dry season clear 1sky albedo is given by 0 - -

$$a_{zd} = 0.26 \cdot 0.00012 \mathsf{P}_{\mathsf{A}} \left(\frac{p}{p_s}\right)^{0.5} \left[1 + \left|\frac{\Phi}{42}\right| + \left[\frac{\Phi}{42}\right]^2\right]$$
(1)

 $0.11 \le a_{zd} \le 0.17$

where P_A is the mean annual precipitation in mm, ϕ is the latitude and p and ps are the station pressure and 1013 mb respectively.

The zenith value of clear sky albedo (az) is obtained as follows

$$a_{z} = a_{zd}$$

$$0.11 \le a_{z} \le 0.5 \left(0.91 - \frac{V_{d}}{V} \right)$$

$$c_{0} = V - V_{d} \qquad 0 \le c_{0} \le 1$$

$$(2)$$

where V_d and V are the actual and saturation vapour pressures.

Clear sky albedo is then computed from the following expression

$$a_{0} = a_{z} \left(\frac{\exp(1.08) - \left(2.16 \frac{\cos z}{\pi} + \sin z\right) \exp(0.012z)}{1.473(1 - \sin z)} \right)$$
(3)

where 'z' is the zenith distance of the Sun at noon. The mean albedo 'a' is given by

$$a = a_0 \left[s + (1 - s) \left(1 - \frac{z}{330} \right) \right]$$
(4)

where s is the sunshine ratio.

Net long wave radiation loss from the surface (L_n) is computed as follows:

The proportional increase in downward long wave radiation due to clouds (ρ) is

$$\rho = 0.18 \left[(1 - c_2)(1 - s)^2 + c_2 (1 - s)^{0.5} \right] \frac{p_s}{p}$$
(5)
$$c_2 = 10 \left(\frac{V_d}{V} - s - 0.42 \right)$$

 $L_N \ge 0.05\varepsilon\sigma(T+273)^4$ and $0 \le c_2 \le 1.0$

Using $\rho,\,V_d$ and T, L_n is computed as:

$$L_{N} = \varepsilon \sigma (T + 273)^{4} \left[1 - (0.71 + 0.007V_{d} \frac{p}{p_{s}})(1 + \rho) \right]$$
(6)

٦

(7)

where ϵ is the emissivity and σ is the Stefan-Boltzman constant.

 $\varepsilon \sigma = 5.22 \text{ x} 10^{-8} \text{ Wm}^{-2} \text{ K}^{-4}$ Net radiation is then obtained from the expression $R_n = R_s(1-a) - L_N$

where R_s is the global radiation.

RESULTS AND DISCUSSION

Net radiation values at the selected stations are given in Table 1

A large variation in monthly mean values of net radiation in the region is noticed, the maximum and minimum values being 393 Cal cm⁻² day⁻¹ and 166 Cal cm⁻² day⁻¹, respectively. In the case of incoming solar radiation the maximum and minimum values observed are 606 and 316 Cal cm⁻² day⁻¹, respectively. The ratio between net radiation and incoming solar radiation (Qn/Qs) varied between 73% and 41%. At 24 out of 28 stations the maximum value of this ratio during the year occurred in March or April. Likewise at 26 stations the lowest value of the ratio occurred in July or August.

As in the case of net radiation a steep variation was found in the values of net longwave radiation .The

¹ Ph.D., DCA, UFCG, Campina Grande – Pb. E-mail: ramanarao_tantravahi@yahoo.com.br

² Aluno do Curso de Graduação em Meteorologia, UFCG, Campina Grande-PB.

maximum and minimum values noticed are 150 and 43 Cal cm⁻² day⁻¹, respectively. At most of the stations the maximum values during the year of Ln occurred during the months August-October and the minimum values during the months March-May.

The net radiation values given in Table 1 are based on the assumption of equality of surface and air temperatures. If these temperatures are different the error involved may be significant in arid and semiarid climates. According to Linacre (1968), net radiation flux decreases by about 10 Cal cm⁻² day⁻¹ for each degree

centigrade that the surface temperature exceeds the air temperature.

REFERENCES

- Linacre.E.T. 1968 Estimating the net radiation flux Agric. Meteorol., 5, 49-63
- Karuna Kumar.K and Rao .V.U.M 1985 Net radiation distribution in India Mausam. 36,(2) 229-232
- Morton.F.I. 1983 Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. J.Hydrol. 66, 1-76

Table 1. Mean monthly values of net radiation (Cal cm⁻² day⁻¹).

Station/ State	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Patos-PB	249	309	328	285	211	169	167	211	250	279	264	243
S.Gonçalo-PB	296	319	354	313	272	211	215	271	309	341	315	285
Monteiro-PB	264	286	304	281	227	197	200	256	279	295	259	245
J.Pessoa-PB	326	329	344	313	255	240	236	275	303	340	330	309
C.Grande-PB	265	288	294	259	219	194	196	225	256	287	280	254
Barreras-BA	352	329	317	296	223	206	207	241	268	283	306	351
Irece-BA	315	302	314	261	190	173	166	187	217	229	259	296
Ilheus-BA	345	336	331	254	230	218	212	253	326	319	335	335
Salvador-BA	377	348	360	288	222	197	209	261	289	317	347	355
Gauratinga-BA	343	306	318	255	207	197	185	228	245	274	262	334
Lenções-BA	311	292	287	251	189	217	182	223	266	245	280	307
Caravelas-BA	411	393	347	266	215	180	191	235	247	272	300	371
B.J.Lapa-BA	332	309	316	266	191	176	167	208	240	256	273	308
Surubim-PE	327	331	331	289	254	231	229	280	310	343	341	311
Cabrobo-PE	270	272	313	278	216	189	173	210	232	262	268	267
Petrolina-PE	315	323	352	298	307	202	192	236	270	305	314	311
Recife-PE	352	348	339	295	258	232	233	282	321	351	355	339
Barbalha-CE	290	285	298	280	234	205	209	262	278	294	295	279
Moradanova-CE	258	288	306	294	245	218	225	225	246	254	239	215
Quixeramobim-CE	242	284	310	292	256	223	203	220	251	265	242	229
Sobral-CE	280	314	309	303	270	254	243	254	289	293	283	257
Fortaleza-CE	279	288	253	244	248	238	242	297	338	332	318	314
Jaguaruana-CE	257	284	275	277	238	218	226	257	283	289	295	286
Crateus-CE	260	290	317	301	259	211	184	205	236	236	225	194
Cruzeta-RN	251	310	334	320	264	223	209	238	263	276	281	250
Própria-SE	389	368	374	324	267	245	241	287	291	378	385	352
Floriano-Pl	280	281	315	285	253	232	215	252	286	297	279	258
Areia-PB	290	297	307	284	214	217	207	248	274	314	293	258