ISSN 0104-1347

Disponibilidade das horas de frio (hf £ 7,2°c) na Encosta da Serra do Sudeste, em Pelotas, RS¹

Availability of chilling hours (ch $\leq 7.2^{\circ}$ c) in the slope of the Southeast mountains, Pelotas, Rio Grande do Sul State, Brazil¹

João Baptista da Silva², Flavio Gilberto Herter³ e Sheila Radmann da Paz⁴

Resumo - No presente trabalho estudou-se o comportamento das horas de frio (hf £7,2°C), registradas nas 27 décadas (dez dias) de março a novembro, na EMBRAPA Clima Temperado, em Pelotas-RS, localizada a 220m de altitude, coordenadas: 31°52′S e 52°21 ′W, de 1958 a 1999, por meio de análises estatísticas. As médias decadais transformadas (Y=X^{0,38}), foram ajustadas, por regressão periódica, a um modelo composto da primeira onda senoidal, com 93% de representatividade. A média decadal máxima estimada (50,1hf) localizou-se na segunda década de julho. Probabilidades de ocorrência de determinadas horas de frio (5, 10, 15, ..., 50hf) foram estimadas pela distribuição normal e variam de 25% a 91%. Os dados de horas de frio, submetidos à análise da variação, apresentaram uma leve tendência linear crescente ao longo dos anos e uma forte sazonalidade dentro dos anos. Estimativas das probabilidades de horas de frio acumuladas para diversas faixas, foram obtidas para os períodos de maio a julho e maio a agosto, por serem os mais importantes quanto ao requerimento de frio das frutíferas. E, daí, pode-se notar a importância do mês de agosto no acúmulo de horas de frio. Encontrou-se, também, uma tendência linear crescente das somas das horas de frio, nos dois períodos, por meio do cálculo das médias móveis, o que representa uma valiosa informação para o incremento das atividades com frutíferas na região.

Palavras-chave: frutíferas, dormência, modelagem estatística, médias móveis.

Abstract - In this paper, the chilling hours (ch £7.2°C) were calculated using statistical analysis. The data were collected during 27 decades (ten days) between March and November, at EMBRAPA Temperate Climate, Pelotas, RS, 220m of altitude, 32°52 'S latitude and 52°21 'W longitude, Brazil, from 1958 to 1999. The transformed (Y=X^{0,38}) decade averages were fitted, using periodic regression, to a first sine wave model, which had a representativeness of 93%. The maximum estimated average (50.1ch) occured in the second decade of July. Probabilities of occurrency for certain chilling hours (5, 10, 15, ..., 50ch) were estimated by Normal distribution and ranged from 25% to 91%. An analysis of variance showed that the chilling hours data have a slight increasing trend along the years and a strong seasonal component within years. Probability estimations of the cumulative chilling hours in several intervals were obtained for May-July and May-August, because of their relevancy in the cold requirements of fruit trees. It was showed the importance of August on the accumulation of chilling hours. Also an increasing linear trend was found for the sum of chilling hours, in the two periods, by using moving averages, which comprises a valuable information to an increase on the local activities with fruit trees.

Key words: fruit trees, dormancy, statistical modelling, moving averages.

¹Trabalho realizado com financiamento do CNPq e da FAPERGS.

²Engenheiro Agrônomo, Livre Docente, Doutor, Prof. Titular (aposentado) do IFM/UFPel, bolsista do CNPq.

³Engenheiro Agrônomo, Doutor, Pesquisador do CPACT/EMBRAPA, bolsista do CNPq.

⁴Aluna do curso de Meteorologia, bolsista do PIBIC/CNPq.

Introdução

O frio é considerado o principal fator exógeno para a indução à saída da dormência em gemas de espécies de frutíferas nas regiões temperadas (NIGOND,1967; CHAMPAGNAT, 1983).

A região sul do Brasil apesar de ser de clima subtropical com algumas localidades temperadas, apresenta grandes variações entre anos, com invernos amenos, o que tem dificultado a adaptação de espécies e cultivares oriundos de regiões com invernos bem definidos, pois as mesmas geralmente apresentam respostas fisiológicas indesejáveis.

A dormência das frutíferas caducifólias, em zonas de clima temperado, envolve três estágios: para-, endo- e ecodormência (LANG, 1987). A endodormência é induzida e eliminada pelo efeito de baixas temperaturas, durante o inverno. Portanto, é importante conhecer-se a duração de tal fase, para poder intervir, quando ocorre insuficiência de frio, com algumas práticas como no caso do uso de substâncias químicas para induzir a brotação.

O efeito de baixas temperaturas, em plantas frutíferas, tem sido estudado por um grande número de pesquisadores. WEIMBERGER, em 1950, foi quem primeiro propôs um modelo para estimar a floração em pessegueiro. O autor baseou-se no efeito de temperaturas inferiores a 7,2°C, como as mais eficientes para eliminar a endodormência de um grande número de cultivares de pessegueiro. O método consiste na contabilização de horas em que a temperatura permanece abaixo deste patamar, durante o período de repouso das frutíferas, sendo que cada cultivar necessita acumular um determinado número de horas abaixo deste nível, para satisfazer a necessidade de frio. O modelo tornou-se o mais difundido e utilizado pela simplicidade de cálculo.

Outros modelos foram propostos nestes últimos trinta anos onde ressaltam o efeito de outros níveis de temperatura. Por exemplo EREZ & LAVEE (1971) verificaram que as temperaturas de 3 e 10°C tem a metade da eficiência comparada a de 6°C, na eliminação da dormência em pessegueiro. Mais tarde, RICHARDSON et al. (1974) propuseram um modelo de Unidades de Frio (UF), onde cada temperatura tem efeito diferente na eliminação da dormência, podendo ser até mesmo negativo, quando a temperatura ultrapassa um determinado patamar.

O objetivo do presente trabalho foi analisar estatisticamente as médias decadais de horas de frio

no CPACT/EMBRAPA, bem como as somas das horas de frio acumuladas nos períodos maio-julho e maio-agosto, visando usar estes conhecimentos como subsídio ao zoneamento de fruteiras.

Material e métodos

Os dados utilizados no trabalho foram as observações decadais de horas de frio (hf ≤ 7,2°C) e suas médias, coletadas nos 42 anos de observação (1958 a 1999), para as 27 décadas de março a novembro, desde os registros (termogramas) na estação meteorológica do Centro de Pesquisas de Clima Temperado da EMBRAPA, coordenadas: 32°52′S e 52°21′W, 220m de altitude, apresentados na Tabela 1.

As médias decadais de horas de frio calculadas nos 42 anos de observações foram devidamente transformadas na busca de homogeneidade de variâncias e normalidade dos dados (BAPTISTA DA SILVA, 1979). A seguir, ajustou-se um modelo de regressão harmônica, de modo a ressaltar a sazonalidade existente. Optou-se pelo processo de análise periódica, tendo em vista o caráter periódico dos dados: as horas de frio são função do comportamento periódico das temperaturas decadais, ao longo do ano (AMARAL, 1968; BAPTISTA DA SILVA et al., 1991).

Baseados na normalidade dos dados transformados, estimaram-se as probabilidades de ocorrência de determinadas quantidades de horas de frio, nas décadas.

A análise da variação das horas de frio, considerou como tratamentos as 27 décadas e como repetições os 42 anos de observação. Embora sabendo das limitações dos resultados da análise, visto que os dados não atendem a pressuposição de independência por falta de casualização, buscou-se, mesmo as sim, alguma informação indicativa para outras análises.

Construiram-se tabelas das horas de frio acumuladas de março a julho e a agosto e, de maio a julho e a agosto, e a partir delas estimou-se probabilidades de ocorrência de horas de frio acumuladas para diversas faixas de interesse nestes períodos definidos. Verificou-se, também, a tendência destas somas de maio-julho e de maio-agosto, ao longo dos anos, por meio de médias móveis (MORETIN et al., 1986).

Resultados e discussão

Aparecem nas últimas colunas da Tabela 1, as médias decadais, os desvio-padrões e os coeficientes de variação dos dados calculados para os 42 anos de observação. As variabilidades dos dados, geralmente altas, são menores nas décadas dos meses de junho, julho e agosto.

Em relação às médias decadais, calculadas nos 42 anos de observação, foi notado que as mesmas não seguiam a distribuição normal, pelo teste de Shapiro e Wilk (SHAPIRO, 1990) donde obteve-se W=0,8767 (P<0,0037), entretanto, pode-se encontrar uma transformação, $Y=X^{0.38}$, que permitiu a aquisição desta importante propriedade (W=0,924; P<0,052). Quanto à homogeneidade de variâncias os testes de Cochran (C_x =0,3401 e C_y =0,2119) e o de Bartlett (F_x =1,77 e F_y =0,8379) apresentaram-se não significativos (variâncias homogêneas), tanto para os dados originais quanto para os transformados (DIXON et al., 1969). Para estes testes, as 27 médias decadais foram subdivididas em 9 grupos de três médias, na ordem de ocorrência dentro do ano.

A seguir, os dados transformados foram submetidos à análise harmônica e ajustou-se uma equação composta pela primeira onda senoidal:

$$Y = 2,6985 - 1,7231 \cos (0,2327t) + 0,1449 \sin (0,2327t)$$

 $t=0,1,2,...,26 \text{ décadas}$

com um coeficiente de determinação (r²) de 93%, indicando um ótimo ajuste.

Na Figura 1, estão representados a curva indicada pela equação ajustada e os pontos (valores transformados) correspondentes aos valores observados. O erro quadrático médio (EQM) do modelo foi de apenas 0,1031. Pela transformação inversa ($X = e^{\ln Y/0,38}$) pode-se voltar aos correspondentes valores de horas de frio estimados pelo modelo.

A curva atinge o seu ponto de máximo $(\hat{Y} = 50,14)$, para t =13, isto é, na 14ª década do período de estudo, segunda década de julho (11 a 20 de julho).

Os dados transformados seguem aproximadamente a distribuição normal com média $\bar{x} = 2,70$ e desvio padrão s=1,29. A partir daí, pode-se estimar, a probabilidade de ocorrência de determinadas horas de frio (X), por décadas, como apresentado na Tabe la 2.

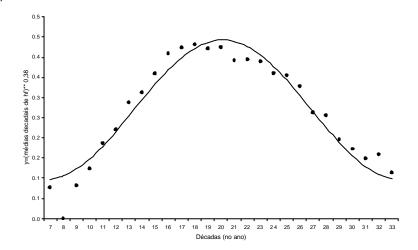
Por exemplo, é esperado 25 ou menos horas de frio (hf \leq 7,2°C) em cerca de 71% das décadas estudadas. Informações valiosas podem ser obtidas desta tabela para o planejamento das atividades com fruteiras que tenham exigências de frio para o seu bom desenvolvimento.

Pelo quadro da análise de variação (Tabela 3) pode-se observar que o efeito dos anos (tendência) e das décadas (sazonalidade) foram altamente significativos. Entretanto, nenhum modelo conseguiu representar adequadamente a tendência dos dados. Quanto a sazonalidade poder-se-ia ajustar uma equação polinomial, ou um modelo de regressão periódica. Devemos lembrar das limitações destes resultados, tendo em vista as pressuposições da análise da variação não atendidas pelos dados em apreço; são usados apenas como uma simples indicação do comportamento das horas de frio ao longo dos anos e no conjunto das décadas avaliadas dentro do ano.

Na Tabela 4, pode-se ver as horas de frio acumuladas de março a julho, de março a agosto, de maio a julho e de maio a agosto. Os meses de julho e agosto foram escolhidos como final do período de acúmulo de horas de frio por serem, qualitativamente e quantitativamente, os períodos mais propícios para quebra de dormência das frutíferas. O início das observações em maio, ao invés de março, justifica-se pelo fato de que as horas de frio ocorridas em março e abril não chegam a representar 20% da soma de horas de frio dos períodos completos (março-julho ou março-agosto).

Estas somas são muito variáveis ao longo dos anos: de 154 a 686 hf, no período março-julho; de 197 a 785 hf, no período março-agosto; de 154 a 640 hf, no período maio-julho e de 197 a 739 hf, no período maio-agosto, indicando uma certa inconstância das horas de frio acumuladas, o que é obstáculo ao planejamento das atividades agrícolas.

As probabilidades deste comportamento, estimadas por meio das freqüências relativas acumuladas (%) estão apresentadas nas Tabelas 5 e 6. Pode-se ver nesta última tabela que nas faixas de 250 a 300hf e de 300 a 350hf encontram-se as maiores probabilidades para o período maio-julho. Por outro lado, no período maio-agosto, são as faixas de 300 a 350hf e de 400 a 450hf que se destacam. Na coluna das freqüências relativas acumuladas (%) pode-se verificar, por exemplo, que no período de maio-julho horas de frio acumuladas até 450h tem probabilidade de ocorrência de cerca de 86%, enquanto para o


Tabela 1. Horas de frio (hf ≤ 7,2°C) registradas nas 27 décadas de março a novembro, no período de 1958 a 1999, na estação meteorológica do CPACT / EMBRAPA Pelotas RS.

	EN	EMBRAPA, Pelotas, RS	<u>4, Pelo</u>	tas, R	S.																			
Décadas		1958	1959	1960	1961	1962	2 196	3 1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
MAR	7	20	0	0	0	0	0		0	0	0	0	0	0	0				0	0	0	0	0	0
	∞	0	0	0	0	0	0		0	0	0	0	0	0	0				0	0	0	0	0	0
	6	5	0	2	0	0	0		0	0	0	0	0	0	0				0	0	0	0	0	0
ABR	10	0	0	0	∞	0	0		0	0	0	0	0	0	0				0	0	7	0	0	0
	11	10	0	0	7	0	15		5	0	10	5	0	0	16				∞	0	2	0	0	25
	12	0	21	18	32	∞	0		29	0	25	27	0	10	45				0	3	0	30	7	0
MAI	13	6	21	%	14	14	22		11	5	0	19	7	15	43				28	18	10	18	16	22
	4	0	47	18	4	0	33		62	26	0	48	7	18	19				0	17	49	17	11	0
	15	82	16	24	9	32	5		15	111	0	39	7	∞	57				5	9	28	105	81	0
NOI	16	9	84	S	53	53	17		9	17	89	18	4	31	27				52	54	0	84	104	65
	17	65	74	10	98	40	86		0	18	77	30	58	29	93				37	41	16	22	80	38
	18	0	25	108	10	49	24		0	38	28	34	12	81	54				33	36	25	26	43	58
IUL	19	0	41	51	49	42	7		105	29	23	39	10	93	39				0	91	0	16	40	99
	20	0	14	6	4	77	51		80	0	15	10	61	34	16				68	52	61	41	89	77
	21	0	0	0	69	72	45		0	35	26	0	0	6	10				51	0	14	19	12	71
AGO	22	27	6	78	0	19	81		13	29	25	12	25	25	61				10	6	31	0	10	33
	23	25	20	15	18	43	32		40	61	20	21	30	10	37				15	70	36	88	12	17
	24	45	24	15	9	87	6		14	25	21	8	39	39	28				35	19	2	55	31	99
SET	25	27	42	43	24	23	0	58	0	27	10	20	19	32	33	25	11	26	21	111	0	35	50	54
	26	0	47	14	0	21	9		30	38	ϵ	0	4	12	0				4	127	4	53	29	45
	27	0	0	12	0	17	12		7	4	∞	20	0	0	2				18	∞	0	4	7	53
OUT	28	0	0	0	0	27	29		6	0	0	0	9	14	22				18	14	0	0	10	10
	56	0	0	0	0	21	0		9	15	0	0	16	7	29				_	12	0	7	2	0
	30	0	7	10	0	Π	0		0	10	∞	0	0	0	7				5	0	0	0	0	17
NOV	31	0	0	0	0	0	0		4	0	0	0	4	0	10				0	0	0	0	0	\mathcal{C}
	32	0	13	7	0	0	0		0	7	0	0	0	0	2				0	0	0	16	19	0
	33	0	S	0	7	7	0		0	0	0	0	0	9	0				0	4	0	0	9	0
SOMA		322	540	447	398	663	474		431	433	368	350	304	468	621				401	592	288	809	699	701

Continua

Continuação da Tabela 1.

Décadas		1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	Médias	DP	CV
MAR	7	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1		0	0	0,50	3,09	618,00
	∞	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0	0	0,00	0,00	,
	6	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0		0	0	0,60	2,18	366,39
ABR	10	0	0	0	1	9	0	0	17	0	0	0	0	0		0	0		15	0	1,76	4,06	230,42
	11	0	0	0	0	7	0	0	5	0	12	17	0	0		0	12		0	4	5,19	8,18	157,61
	12	0	0	0	∞	0	0	0	24	0	0	8	0	2		0	0		0	7	8,02	11,65	145,26
MAI	13	0	0	0	0	10	1	16	38	20	36	49	16	13	0	∞	0	11	29	11	16,10	18,13	112,64
	4	0	0	12	87	19	32	24	50	18	4	10	39	24		0	30		6	56	19,98	19,93	72,66
	15	4	59	15	9	15	4	49	112	56	49	0	99	48		9	62		3	38	28,98	29,68	102,42
NOI	16	29	10	109	36	4	29	56	91	59	30	48	32	34		48	82		27	99	40,64	29,09	71,58
	17	118	28	28	4	4	13	62	47	53	62	7	18	10		63	38		38	59	44,57	28,53	64,01
	18	16	73	102	108	10	0	54	71	0	78	84	42	46		77	144		65	10	46,86	36,92	78,79
IUL	19	40	4	4	21	99	22	2	68	62	ϵ	29	72	54		54	50		18	59	43,81	31,82	72,63
	20	27	27	28	30	39	0	37	98	49	72	94	125	103		31	79		13	25	45,00	31,29	69,53
	21	20	25	32	115	16	54	34	99	38	86	28	101	71		24	134		28	33	36,43	33,54	92,07
AGO	22	20	5	99	78	0	1	26	15	23	47	29	91	102		95	27		0	57	36,86	30,14	81,78
	23	27	34	45	58	39	17	39	19	21	14	6	53	99		72	59		17	64	35,67	22,48	63,03
	24	18	11	0	69	48	25	38	65	59	62	0	24	4		0	35		27	Ξ	29,24	21,33	72,95
SET	25	21	8	38	13	56	25	55	50	28	50	∞	0	42		17	98		17	20	28,10	22,04	78,45
	26	15	0	50	0	0	0	55	49	24	47	11	11	20		23	17		25	16	22,79	25,51	111,95
	27	19	16	10	23	0	4	26	6	51	26	42	29	8		16	0		12	12	12,67	13,06	103,10
OUT	28	28	16	∞	11	7	0	14	8	16	0	45	34	0		0	0		14	41	11,88	14,18	119,35
	59	19	П	4	0	0	10	14	15	14	12	0	3	0		19	0		3	0	5,88	7,52	127,87
	30	0	\mathfrak{S}	7	0	0	15	0	7	5	0	0	16	0		15	3		0	0	4,21	5,52	130,99
NOV	31	0	0	9	0	0	0	6	15	7	0	0	25	0		0	3		3	0	2,86	5,15	180,26
	32	0	4	0	19	0	16	0	4	0	0	11	0	0		7	0		0	0	3,43	5,79	168,85
	33	0	0	0	1	8	0	0	7	0	0	0	0	0		0	0		0	0	1,38	2,45	177,41
SOMA		459	364	585	729	397	266	580	964	530	742	009	787	647		570	832		363	529			

Figura 1 Curva do modelo de regressão periódica ajustada aos valores transformados ($Y = X^{0.38}$) das médias decadais (de março a novembro) de horas de frio $hf \le 7,2^{\circ}C$), no CPACT / EMBRAPA, de 1958 a 1999.

período de maio-agosto é de 64 %. Isto é ocasionado pela grande contribuição do mês de agosto em horas de frio no período, com acréscimos relativos médio de 34% ao longo dos 42 anos.

Para as somas térmicas de maio-julho e maio-agosto foram estimadas as tendências ao longo dos anos, baseadas nas médias móveis de 3, 5, 7, 9 e 11 anos. Para estas últimas ficou bem nítida a tendência crescente das somas de horas de frio (hf \leq 7,2 °C), nos dois períodos. Nas Figuras 2 e 3, estão representadas as médias móveis de 11 anos para os períodos de maio-julho e de maio-agosto, respectivamente. Pode-se ver uma tendência crescente significativa (α =0,01), representada pelas retas de regressão ajustadas aos

Tabela 2. Probabilidades de ocorrência das médias decadais de horas de frio.

x = valores de horas de frio	$P(X \le x)$
5	25%
10	41%
15	53%
20	63%
25	71%
30	77%
35	82%
40	85%
45	88%
50	91%

dados. Para os períodos de maio-julho e maio-agosto, as equações ajustadas foram, respectivamente:

$$\hat{Y} = 225,2 + 4,564 t$$
, com $r^2 = 0,81$ e $\hat{Y} = 320,2 + 4,892 t$, com $r^2 = 0,84$

para
$$t = 1,2,3,...,32$$
 médias moveis

Esta informação é bastante importante para o planejamento das atividades com frutíferas na região, visto indicar um promissor horizonte de suficiência de horas de frio para a quebra de dormência daquelas espécies mais exigentes, caso mantenha-se o mesmo comportamento verificado. Convém salientar que este fato não reflete um correspondente inverno mais rigoroso, visto que o método leva em conta o somatório de temperaturas menores ou

iguais a 7,2°C, o que não indica a ocorrência obrigatória de valores muito baixos.

Conclusões

O estudo permite concluir que:

- As horas de frio (hf ≤ 7,2°C) registradas nas 27 décadas do período de março a novembro, apresentam uma leve tendência crescente ao longo dos anos e uma sazonalidade marcante em relação às décadas, dentro de cada ano.
- As médias decadais de horas de frio são crescentes a partir de março até atingir um ponto de máximo (Y = 50,14) na segunda década de julho e, daí, decrescem até novembro.
- A partir dos dados (médias decadais) transformados, probabilidades de ocorrência de determinadas quantidades de horas de frio (5, 10, 15,..., 50hf) sejam estimadas pela distribuição Normal, variando de 25% a 91%.
- As mais altas probabilidades de ocorrência de horas de frio acumuladas são obtidas nas faixas de 250 a 300hf e de 300 a 350hf, para o período maio-julho e, nas faixas de 300 a 350hf e de 400 a 450hf, para o período maio-agosto. O mês de agosto tem grande importância em ocorrência de horas de frio no período.

Tabela 3 Análise da variação das horas de frio (hf £ 7,2°C) em relação às 27 décadas de março a novembro e aos 42 anos de observação (1958 - 1999), no CPACT / EMBRAPA.

Causas da variação	GL	SQ	QM	\mathbf{F}	
Anos	41	39205	956,2	2,36	**
Décadas	26	307901	11842,4	29,17	**
Resíduo	1066	432719	405,9		
TOTAL	1133	779825			

Média geral = 19,8 Coeficiente de variação = 102% ** = significativo a 1%

 As somas de horas de frio acumuladas de maio a julho e de maio a agosto apresentam tendências lineares crescentes ao longo dos anos, o que indica um valioso subsídio para o planejamento das atividades com frutíferas na região.

Referências bibliográficas

AMARAL, E. Análise harmônica. **Pesquisa Agropecuária Brasileira**, Brasília, v. 3, p. 7-43, 1968.

BAPTISTA DA SILVA, J. Tabela de probabilidades das precipitações pluviométricas máximas pentadais em Pelotas, RS. Pelotas: UFPel, 1979, 144 p. Tese (Concurso Público para Professor Titular). Universidade federal de Pelotas, 1979.

BAPTISTA DA SILVA, J., FERNANDES, A.M.V. Análise harmônica das temperaturas mínimas em Pelotas, RS. **Revista Brasileira de Meteorologia**, São Paulo, SP, v. 6, n. 1, p. 455-470, 1991.

CHAMPAGNAT, P. Bud dormancy, correlations between organs, and morphogenesis in wood plants. **Sovietic Plant Physiology,** Washington, v. 30, n. 3, p. 458-471, 1983.

CHAMPAGNAT,P. Qualques reflexions sur la demonce des bourgeons des végétaux ligneux. **Physiologie Végétale**, Paris, v. 21, n. 3, p. 607-618, 1983.

CHAMPAGNAT, P. Rest and activity in vegetative buds of rees. **Annual de Science Forestier**, Paris, v. 46, p. 9-26. 1989. (Suplemento).

DIXON,W. J., MASSEY Jr., F.J. **Introduction to Statistical Analysis.** 3. ed., Tokyo: International Student Edition, Mc Graw-Hill Kozakusha Ltda, 1969, 638 p.

EREZ, A. ,LAVEE, S. The effect of climatic conditions on dormency development of peach buds I. Temperature, **Proceeding American Society Horticultural Science**, Geneva, USA, v. 96, p. 711-714, 1971.

HERTER, F.G. et al. Determinação do término da dormência e floração para algumas cultivares de macieira: comparação entre métodos biológico e empírico. **Revista Brasileira de Fruticultura**, Cruz das Almas, v. 14, n. 1, p. 77-81, 1992.

LANG, G.A. Dormancy: A universal terminology. **Hortscience**, Alexandria, USA, v. 22, p. 817-920, 1987.

MAUGET, J.C., Domance des bourgeons chez les arbres fruitiers de climat tempéré. In: LEGUYADER, H. (Ed.), "Le développement des végétaux. Aspects théoriques et syntétiques"., Paris, (FRA): Masson, p. 133-150, 1987.

MORETIN, P.A., TOLOI, C.M. **Séries Temporais**. São Paulo: Atual Editora, 1986. 135 p.

NIGOND, J. Recherches sur la dormance des bourgeous de la vigne. Institut Nacional de la Recherche Agronomíque: Paris, 1967. 170 p. Thèse (Doutorado em Ciencias Naturais), Université de Paris, 1967.

RICHARDSON, E.A., SEELEY, S.D., WALKER, D.R. A model for estimating the completion of rest for "Redhaven" and "Elberta" peach trees. **Hortscience**, Alexandria, USA, v. 9, p. 331-332, 1974.

SHAPIRO, S.S. **How to test normality and other distributional assumptions**. 2. ed., Wisconsin: American Society for Quality Control, 1990. 92 p. (v. 3).

WEIMBERGER, J.H. Chilling requeriments of peach varieties. **Proceeding American Society Horticultural Science**. Geneva, USA, v 56, p. 122-128, 1950.

Tabela 4. Horas de frio (≤7,2°C) acumuladas de março a julho, de março a agosto, de maio a julho e de maio a agosto, na estação meteorológica do CPACT / EMBRAPA, Pelotas, RS, 1958/1999.

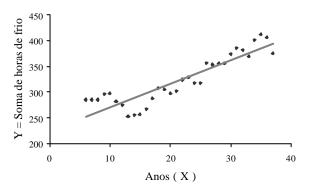
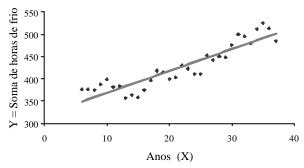

Mar-Jul 197 343 252 342 387 365 427 569 161 328 419 360 203 234 273 318 272 269 161 328 419 360 203 234 435 334 416 284 Mar-Ago 295 426 361 367 528 420 538 380 323 338 310 255 402 545 487 354 435 334 416 284 Mai-Jul 162 322 425 412 615 346 373 278 275 161 318 358 307 203 265 413 278 412 356 412 36 412 36 412 414 352 427 36 413 418 358 407 414 434 434 434 434 437 436 418 418 418 418 41		1958	1958 1959 1960 1961	1960	1961	1962	1963	1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978
295 426 361 367 536 427 162 322 233 295 379 290 259 405 341 320 528 412 30 da tabela 4. 30 da tabela 4. 1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 485 387 292 267 360 448 508 493 357 316 461 653	Mar-Jul	197	343	252	342	387	305		313		272	269		328	419	360	203	234	273	318	212	379
162 322 233 295 379 290 259 405 341 320 528 412 ão da tabela 4. 360 481 482 1982 1983 1984 1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 455 387 292 267 360 448 508 493 357 316 461 653	Mar-Ago	295		361	367	536	427		380		338	310		402	545	487	354	435	334	416	284	522
259 405 341 320 528 412 ão da tabela 4. 1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 455 387 292 267 360 448 508 493 357 316 461 653	Mai-Jul	162	322		295	379	290		279	179	237	237		318	358	307	203	226	265	315	203	349
ão da tabela 4. 1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 455 387 292 267 360 448 508 493 357 316 461 653	Mai-Ago	259	405		320	528	412		346	332	303	278		392	484	434	354	427	326	413	275	492
ão da tabela 4. 1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 455 387 292 267 360 448 508 493 357 316 461 653																						
1979 1980 1981 1982 1983 1984 457 412 292 267 360 457 510 518 357 316 461 662 455 387 292 267 360 448 508 493 357 316 461 653	Continuaç	io da ti	abela 4																			
457 412 292 267 360 457 276 154 304 686 313 484 407 501 405 318 311 631 295 510 518 357 316 461 662 363 197 407 785 386 607 483 669 577 452 478 723 357 455 387 292 267 360 448 263 154 304 640 313 472 387 501 403 308 311 618 280 508 493 357 316 461 653 350 197 407 739 386 595 463 669 575 412 478 710 342		1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997		1999
510 518 357 316 461 662 363 197 407 785 386 607 483 669 577 452 478 723 357 455 387 292 267 360 448 263 154 304 640 313 472 387 501 403 308 311 618 280 508 493 357 316 461 653 350 197 407 739 386 595 463 669 575 412 478 710 342	Mar-Jul	457	412	292	267	360	457					'		407	501	405	348	311	631	295	245	308
455 387 292 267 360 448 263 154 304 640 313 472 387 501 403 308 311 618 280 508 493 357 316 461 653 350 197 407 739 386 595 463 669 575 412 478 710 342	Mar-Ago	510	518	357	316	461	662				785			483	699	577	452	478	723	357	289	440
508 493 357 316 461 653 350 197 407 739 386 595 463 669 575 412 478 710 342	Mai-Jul	455	387	292	267	360	448		154	304	640	-		387	501	403	308	311	618	280	230	297
	Mai-Ago	208	493	357	316	461	653		197	407	739	386	. 565	463	699	575	412	478	710	342	274	429

Tabela 5. Frequências relativas acumuladas (%) das horas de frio (hf = 7,2 °C) de março a julho e de março a agosto, na estação meteorológica do CPACT / EMBRAPA, Pelotas, RS, 1958/1999.


	Março -	Julho			Março -	Agosto	
Classes	Frequência	Frequência relativa (%)	Frequência relativa acumulada (%)	Classes	Frequência	Frequência relativa (%)	Frequência relativa acumulada (%
150 - 200	4	9,5	9,5	150 - 200	1	2,4	2,4
200 - 250	4	9,5	19,0	200 - 250	0	0,0	2,4
250 - 300	8	19,0	38,0	250 - 300	4	9,5	11,9
300 - 350	10	23,9	61,9	300 - 350	5	11,9	23,8
350 - 400	5	11,9	73,8	350 - 400	8	19,0	42,8
400 - 450	4	9,5	83,3	400 - 450	7	16,7	59,5
450 - 500	3	7,1	90,4	450 - 500	5	11,9	71,4
500 - 550	2	4,8	95,2	500 - 550	5	11,9	83,3
550 - 600	0	0,0	95,2	550 - 600	1	2,4	85,7
600 ou mais	2	4,8	100,0	600 ou mais	6	14,3	100,0

 $\begin{tabela 6.5cm} \textbf{Tabela 6}. Frequências relativas acumuladas (\%) das horas de frio (hf = 7,2 \, ^{o}C) de maio a julho e de maio a agosto, na estação meteorológica do CPACT / EMBRAPA, Pelotas, RS, 1958/1999. \end{tabela 6}$

	Maio -	Julho			Maio -	Agosto	
Classes	Frequência	Frequência relativa (%)	Frequência relativa acumulada (%)	Classes	Frequência	Frequência relativa (%)	Frequência relativa acumulada (%)
150 - 200	4	9,5	9,5	150 - 200	1	2,4	2,4
200 - 250	6	14,3	23,8	200 - 250	0	0,0	2,4
250 - 300	10	23,8	47,6	250 - 300	5	11,9	14,3
300 - 350	9	21,4	69,0	300 - 350	9	21,4	35,7
350 - 400	5	11,9	81,0	350 - 400	4	9,5	45,3
400 - 450	2	4,8	85,7	400 - 450	8	19,0	64,3
450 - 500	2	4,8	90,5	450 - 500	6	14,3	78,6
500 - 550	2	4,8	95,2	500 - 550	2	4,8	83,4
550 - 600	0	0,0	95,2	550 - 600	2	4,8	88,1
600 ou mais	2	4,8	100,0	600 ou mais	5	11,9	100,0

Figura 2 Médias móveis de 11 anos para a soma de horas de frio no período de maio a julho, no CPACT/EMBRAPA, Pelotas, RS, 1958-1999 (X=0 : Ano1958).

Figura 3. Médias móveis de 11 anos para a soma de horas de frio no período de maio a agosto, no CPACT/EMBRAPA, Pelotas, RS, 1958-1999 (X=0 : Ano1958).