TENDÊNCIA TEMPORAL DO ÍNDICE HÍDRICO DECENDIAL NA METADE SUL DO ESTADO DO RIO **GRANDE DO SUL**

Janice LEIVAS¹, Júlio MARQUES², Caroline RIETH³, Moacir BERLATO⁴, Denise FONTANA ⁵

Introdução

O Rio Grande do Sul sofre, com freqüência, deficiências hídricas que prejudicam o rendimento e a produção de grãos. Nos últimos dez anos, o Estado perdeu cerca de 20 milhões de toneladas de grãos devido às estiagens.

O índice hídrico (ETR/ETo) é um parâmetro importante para representar as deficiências hídricas, já que contabiliza o quanto falta de água no solo para que a evapotranspiração real (ETR) ocorra potencialmente (ETo), ou seja, o solo esteja com boa disponibilidade de água.

A freqüência de anos considerados secos (14%) é maior do que os anos considerados chuvosos (10%), como mostra a análise estatística da precipitação pluvial anual no Rio Grande do Sul (BERLATO, 1970). No sudoeste do Estado (região da Campanha e do Baixo Vale do Uruguai), a frequência média de anos secos atinge 20%. Nesta região, ocorrem estiagens com maior frequência e intensidade.

MOTA et al (1983) verificou tendência temporal decrescente do índice de seca para milho e soja no sul do Brasil.

Os estudos realizados no Estado sobre deficiência hídrica foram feitos, na maioria dos casos, em base mensal ou anual. Para a agricultura, é importante um maior detalhamento temporal, logo a base decendial (período de 10 dias) é mais adequada.

O objetivo deste trabalho foi avaliar a tendência temporal do índice hídrico (ETR/ETo) decendial na metade sul do estado do Rio Grande do Sul.

Material e métodos

Os dados diários de precipitação pluvial, insolação, temperatura máxima e mínima, do período 1961-90, foram obtidos das estações meteorológicas do Oitavo Distrito de Meteorológia do Instituto Nacional de Meteorologia (8° DISME/ INMET) e da Fundação Estadual de Pesquisas Agropecuária (FEPAGRO). Foram utilizados dados meteorológicos de sete localidades, distribuídas na metade sul do Estado. O período 1961-90foi tomado por corresponder à normal climatológica padrão.

Para cobrir as falhas nos dados , foi feita uma estimativa com base nos dados meteorológicos de estações vizinhas, pelo método descrito por TUBELIS & NASCIMENTO (1980).

Os valores diários de precipitação pluvial, temperatura média e insolação foram agrupados em períodos de dez dias, ficando os meses divididos em três decêndios. Como o número de dias dos meses são diferentes, o primeiro e o segundo decêndios do mês ficaram com 10 dias, cada um, e o terceiro decêndio ficou com um número variável de dias de acordo com o mês, como por exemplo, janeiro com 11 dias no terceiro decêndio e fevereiro, com 8 ou 9 dias. Foram feitas médias e/ou somas decendiais dos elementos meteorológicos.

Para estimar a evapotranspiração potencial média diária (ETo) foi utlizado o Método de Priestley e Taylor, conforme BERLATO & MOLION (1981).

Com os dados decendiais de ETo e precipitação pluvial (P) foi realizado o balanço hídrico decendial seriado, pelo método de Thornthwaite e Mather, descrito por CUNHA (1992), com capacidade de armazenamento de água disponível no solo (CAD) de 75mm e, daí, obtida a evapotranspiração real (ETR).

A análise da tendência temporal foi feita para o índice hídrico dado por:

$$I H = ETR/ETo$$
 (1)

Como método de estimar a tendência temporal do ETR/ETo foi utilizado um modelo de regressão linear simples, dado por:

$$I H_t = \beta_{0+} \beta_1 t \tag{2}$$

I H t é índice hídrico decendial do tempo t;

 β_o é o intercepto da reta ;

β₁ é o coeficiente de regressão.

As estimativas dos coeficientes β_o e β_1 foram obtidas pelo método dos quadrados mínimos.

Para verificar se existe tendência foi feito um teste de hipótese para o coeficiente de regressão β_1 (H_o : β_1 = 0, não existe tendência; $H_1: \beta_1 \neq 0$, existe tendência), em nível de significância 0,05 e 0,01.

A análise da tendência decendial do índice foi realizada para os meses de setembro a abril, já que esse é o período mais importante para a agricultura no Estado, especialmente para as culturas de primavera-verão que representam mais de 90% da produção de grãos no Rio Grande do Sul

Resultados e discussão

A Tabela 1 apresenta os parâmetros da análise temporal para as 7 localidades do Estado, do período de setembro a abril, de 1961 a 1990. Dos 168 decêndios analisados na metade sul do Estado, em apenas 10 foram observadas tendências significativas de índice hídrico decendial (3 ao nível de significância 1% e 7 a 5%), ou seja, aproximadamente 6 % do total.

⁵ Eng^a Agr^a, Dr., Faculdade de Agronomia/UFRGS.

Trabalho parcialmente financiado pelo PSPPG-CNPq/FAPERGS.

Mestranda do curso de Pós-Graduação em Fitotecnia, Departamento de Agrometeorologia, da Universidade Federal do Rio Grande do Sul (UFRGS), RS. E-Mail: jleivas@pop.com.br.

Doutorando do curso de Pós-Graduação em Fitotecnia, Departamento de Agrometeorologia da UFRGS

³Caroline Rieth, estudante do curso de graduação em Agronomia, bolsista do CNPq.

⁴Eng Agr, Dr., Faculdade de Agronomia/UFRGS, Cx Postal 776, CEP 91501-970. Porto Alegre- RS

Na tabela são apresentados apenas os decêndios centrais de cada mês analisado.

A análise estatística a partir do teste t, com nível de significância a 1% mostrou três localidades com variações significativas no período analisado. Alegrete apresentou uma tendência de incremento ($\beta_1 > 0$) do índice hídrico no 1° decêndio de fevereiro, em Pelotas, houve tendência de aumento desse índice no 3° decêndio de janeiro. Em Santa Vitória do Palmar, houve uma tendência de aumento do ETR/ETo no 3° decêndio de fevereiro.

No nível de significância 5%, foi observado em Alegrete, um decêndio com tendência de diminuição (β_1 <0) do índice hídrico (2° decêndio de março). Em Bagé, apenas no 3° decêndio de janeiro houve incremento no índice ETR/ETo. São Gabriel apresentou tendência temporal positiva em três decêndios (1° e 3° decêndio de fevereiro e 3° decêndio de abril). Em Santa Maria, apenas o 1° decêndio de janeiro mostrou tendência negativa do índice hídrico.

Estes resultados para o IH são coerentes com os da tendência temporal da precipitação pluvial decendial, da mesma região e período de estudo, onde, também, não foi encontrada tendência temporal na maioria dos decêndios.

A tendência analisada foi de um período de 30 anos, normal climatológica 1961-90. Para a confirmação, ou não, dessas tendências, um período maior seria recomendável.

Tabela 1. Estatísticas da análise da tendência temporal do índice hídrico decendial na metade sul do Rio Grande do Sul, período 1961-90.

Local /	Média	βο	β1	T		
Período	mm	mm	mm/ano	Teste t		
Alegrete						
2° dec set	0,93	5,03	-0,002	-0,626		
2° dec out	0,79	3,13	-0,001	-0,213		
2° dec nov	0,77	0,41	0,0002	0,034		
2° dec dez	0,69	3,16	-0,001	-0,184		
2° dec jan	0,62	-15,09	0,008	1,078		
2° dec fev	0,81	-10,24	0,0056	0,916		
2° dec mar	0,78	23,05	-0,011	-1,988*		
2° dec abr	0,84	3,64	-0,001	-0,274		
Bagé						
2° dec set	0,95	2,40	0,00	-0,304		
2° dec out	0,83	2,75	-0,001	-0,231		
2° dec nov	0,761	-12,45	0,007	1,43		
2° dec dez	0,70	8,83	-0,004	-0,66		
2° dec jan	0,66	-1,88	0,001	0,16		
2° dec fev	0,82	-0,94	0,005	0,92		
2° dec mar	0,78	15,66	-0,007	-1,35		
2° dec abr	0,82	-5,78	0,003	0,60		
Encruz. do Sul						
2° dec set	0,97	3,08	-0,001	-0,91		
2° dec out	0,87	-0,81	0,0009	0,27		
2° dec nov	0,84	-1,52	0,0012	0,27		
2° dec dez	0,81	14,47	-0,007	-1,47		
2° dec jan	0,74	-2,81	0,0018	0,30		
2° dec fev	0,83	3,85	-0,002	-0,30		
2° dec mar	0,84	3,50	-0,001	-0,29		
2° dec abr	0,84	9,59	-0,004	-0,93		
Pelotas						
2° dec set	0,96	6,69	-0,003	-1,49		
2° dec out	0,89	-5,524	0,003	1,07		
2° dec nov	0,78	-5,092	0,003	0,62		
2° dec dez	0,72	-3,621	0,002	0,31		
2° dec jan	0,73	-0,091	0,0004	0,06		
2° dec fev	0,82	-13,57	0,007	1,38		
2° dec mar	0,86	17,08	-0,008	-2,29*		
2° dec abr	0,72	4,094	-0,002	0,28		

Local/ Período	Média mm	β _o mm	β ₁ mm/ano	Teste t		
São Gabriel						
2° dec set	0,92	1,054	0,000	-0,02		
2° dec out	0,72	-7,264	0,004	0,71		
2° dec nov	0,66	-11,66	0,006	0,88		
2° dec dez	0,59	-8,74	0,005	0,74		
2° dec jan	0,54	-17,92	0,009	1,19		
2° dec fev	0,64	12,06	0,006	0,91		
2° dec mar	0,68	9,358	-0,004	0,60		
2° dec abr	0,80	-2,21	0,002	0,26		
Santa Vitória do Palmar						
2° dec set	0,92	5,14	-0,0021	-0,72		
2° dec out	0,87	0,055	0,0005	0,13		
2° dec nov	0,81	-8,379	0,0046	0,89		
2° dec dez	0,68	-7,585	0,0042	0,65		
2° dec jan	0,69	-0,453	0,0006	0,07		
2° dec fev	0,76	0,0054	0,023	0,81		
2° dec mar	0,76	11,873	-0,0056	-0,94		
2° dec abr	0,78	-0,607	0,0007	0,13		
Santa Maria						
2º dec set	0,97	1,46	-0,0002	-0,13		
2º dec out	0,87	-3,04	0,002	0,52		
2º dec nov	0,82	-4,77	0,0028	0,69		
2º dec dez	0,79	-2,32	0,0016	0,31		
2° dec jan	0,77	-9,29	0,0051	0,82		
2° dec fev	0,88	6,91	-0,003	-0,61		
2º dec mar	19,29	-0,009	0,108	-1,84		
2° dec abr	0,91	-0,55	0,0007	0,20		

^{*} significativo a 5 %

 β_0 e β_1 - coeficientes do modelo de regressão linear

Conclusão

Não houve uma tendência significativa, nem de aumento nem de diminuição do IH, no período estudado . Para confirmar esse resultado, é recomendável fazer a análise de tendência para um período de tempo mais longo.

Referências bibliográficas

BERLATO, M., FONTANA, C., BONO, L. Tendência Temporal da precipitação pluvial anual do Rio Grande do sul. **Revista Brasileira de Agrometeorologia**, Santa Maria, v. 3, p. 111-113, 1995.

MOTA, F. S., AGENDES, M. O., SILVA, J. B. Tendência temporal do índice de seca para milho e soja no sul do Brasil. VIII CONGRESSO BRASILEIRO DE AGROMETEOROLOGIA. **Anais...** Porto Alegre,p. 7, 1993.

TUBELIS, A., NASCIMENTO, F.. **Meteorologia descritiva**.São Paulo: Nobel, 1980. 374 p.

BERLATO, M.A., MOLION, L.C.B. 1981. Evaporação e Evapotranspiração. **Boletim Técnico/IPAGRO**, Porto Alegre, n.7, p. 3-95.

CUNHA, G.R. Balanço Hídrico Climático. In: BERGAMASCHI, H. (Coord). **Agrometeorologia Aplicada à Irrigação.** Porto Alegre: Editora da UFRGS, 1992, p.63-84.