AVALIAÇÃO E CALIBRAÇÃO DE MODELO PARA A ESTIMATIVA DE PRODUTIVIDADE DA CULTURA DE MILHO (Zea mays L.)

Luís Gonzaga Medeiros de FIGUEREDO JÚNIOR¹, Durval DOURADO NETO².5, Nilson Augusto VILLA NOVA³.5, Gilberto Fernando FISCH⁴.

Introdução

A importância das condições climáticas, durante a estação de crescimento na produtividade da cultura de milho, é amplamente reconhecida por muitos pesquisadores. Por outro lado, as características agroclimáticas de várias localidades podem influenciar diferentemente a produtividade final da cultura. A quantificação da relação entre produtividade da cultura e variáveis agroclimáticas, permite que o impacto dessas variáveis na produtividade, durante o ciclo da cultura, seja avaliado.

Os modelos de simulação de crescimento e previsão de rendimento de culturas permitem fazer simulações de longo prazo, a um baixo custo, utilizando características do solo e práticas de manejo da cultura durante o período de dados climatológicos históricos disponíveis determinado local. De acordo com THORNLEY (1976), inúmeras vantagens podem ser conseguidas com o uso de modelos bem elaborados, considerando que os mesmos devem resumir convenientemente uma gama de informações, permitindo progressos no conhecimento da planta e suas interações com o ambiente, além de esclarecer pontos em que o conhecimento seja limitado.

Entretanto, para que um modelo possa ser utilizado convenientemente em determinado local, é necessário avaliar seu desempenho e, por vezes, calibrar seus parâmetros.

Dessa forma, o presente trabalho tem por objetivo, calibrar um modelo para estimativa do rendimento da cultura de milho baseando-se na disponibilidade de energia e de água no solo.

Material e métodos

Com base nas relações entre dados agroclimáticos e a conversão de energia solar em produção de massa de matéria seca, elaborou-se o modelo para estimar a produtividade da cultura de milho.

A partir de dados experimentais obtidos por HEEMST (1986), foi realizada análise de regressão múltipla, sendo obtida uma equação (FIGUEREDO JÚNIOR et al., 2002) para estimar a assimilação de CO₂ em plantas C4, em função da radiação fotossinteticamente ativa e da temperatura do ar.

Sendo as massas moleculares de CO_2 = 44g mol⁻¹ e de CH_2O = 30g mol⁻¹, a assimilação de dióxido de carbono (μL cm⁻² h⁻¹) pode ser convertida em massa bruta de carboidrato produzido (M_{CH2O} , g h⁻¹cm⁻² de folha), a partir da equação geral dos gases (PV = nRT) e de dados climáticos. Considerando-se M_{CH2O} como sendo o valor médio

diário para o ciclo inteiro (C), conhecendo-se a média do fotoperíodo (H) e do índice de área foliar durante o ciclo (IAF_m, m² m⁻²), pode-se estimar o rendimento de carboidrato total (M_{CH2O}, kg ha⁻¹), através da seguinte equação:

$$M_{CH_2O} = \frac{36,585.P.Adc.IAF_m.C.H}{T + 273}$$

em que P se refere à pressão atmosférica local (atm) e T à temperatura do ar (°C).

Com base no conceito de De WIT (1965), concebido para estimar rendimento potencial de uma cultura através da energia disponível no local considerado, chegou-se às correções necessárias para estimar o rendimento potencial da cultura de milho. Essas correções referem-se à: (i) correção para interceptação de radiação solar (CRs); (ii) correção para respiração de manutenção e crescimento (CR_{MC}); e (iii) índice de colheita (0,4 \leq IC \leq 0,5). As equações apresentadas a seguir, foram obtidas através de análise de regressão, a partir de dados experimentais obtidos por DOORENBOS & KASSAM (1994), calibrados para ampla faixa de condições climáticas.

$$CRs = 1 - e^{-k.IAFm}$$

$$CRmc = a + b.T + c.e^{T} + d\ln(T)^{2} + \frac{e.\ln(T)}{T}$$

em que a, b, c, d se referem aos parâmetros empíricos determinados em análise de regressão (a = -64,99114; b = -9,9595765; c = 0,021803509; d = -0,0010608735; e = 36,985813) e k ao coeficiente de extinção da radiação solar. A produtividade de grãos ($P_{grãos}$) pode então ser estimada através da seguinte equação:

$$P_{(gr\tilde{a}os)} = M_{CH2O}.CR_{mc}.CR_{s}.IC$$

Para calibração do modelo proposto (Figueredo Júnior et al, 2002), foram utilizados dados obtidos por dois autores: (i) LIMA (1995) que objetivou validar e calibrar o modelo CERES-MAIZE para condições tropicais; e (ii) GADIOLI (1999), que teve por objetivo estudar a influência de fatores ambientais sobre a fenologia e rendimento de milho. Os ensaios experimentais foram desenvolvidos em Piracicaba e Taubaté (SP), respectivamente, sendo avaliados, em cada trabalho, três genótipos de milho com diferentes exigências calóricas, semeados em duas épocas distintas.

Para estimativa de produtividade de milho, segundo o procedimento descrito anteriormente, desenvolveu-se um programa em linguagem de programação Visual BASIC para ambiente Windows.

Resultados e discussão

-

¹Eng. Agrônomo. Doutorando em Irrigação e Drenagem USP-ESALQ. Bolsista CAPES. <u>lgfigue@esalq.usp.br</u>;

²Dr. Prof. Departamento de Produção Vegetal USP-ESALQ, <u>dourado@esalq.usp.br</u>;

³Dr. Prof. Departamento de Ciências Exatas USP-ESALQ. <u>navinova@esalq.usp.br</u>;

⁴Dr. Pesq. IAE/CTA. gfisch@iae.cta.br;

⁵Bolsista CNPq.

0 resumo das principais variáveis agrometeorológicas utilizadas em estimativa realizada para Piracicaba e Taubaté (SP), e os valores de rendimento de milho observado (LIMA, 1995; GADIOLI, 1999) e estimados com o modelo proposto podem ser observados na Tabela 1 e na Figura 1. A comparação dos rendimentos é possível porque tanto os valores estimados, quanto os valores observados, referem-se ao rendimento potencial (De WIT, 1965) da cultura de milho, em condições de adequado suprimento de água e nutrientes e sem sofrer injúrias por pragas e doenças.

Conclusões

Os resultados indicam que as produtividades estimadas pelo modelo proposto, apresentaram ajuste satisfatório aos dados utilizados nesta avaliação, e que a mesma tendência apresentada pelos dados observados foi seguida pela estimativa nas diferentes épocas de semeadura, podendo-se inferir que o modelo proposto tem aplicação em condições variadas de disponibilidade de energia.

Referências bibliográficas

DOORENBOS, J.; PRUITT, W.O. Necessidades hídricas das culturas. Tradução de GHEYI, H. et al. Campina Grande: UFPB, 1997. 204p. (Estudos FAO: Irrigação e Drenagem, 24)

FANCELLI, A.L.; LIMA, U.A. **Milho:** Produção, préprocessamento e transformação agroindustrial. São Paulo: FEALQ, 1982. 112p.

FIGUEREDO JÚNIOR, L.G.M.; DOURADO NETO, D.; VILLA NOVA, N.A.; GARCIA, A.G.y. Proposta de modelo mecanístico para a estimativa de rendimento potencial da cultura de milho. In: CONGRESSO NACIONAL DE MILHO E SORGO. 24., Florianópolis, 2002. CD-Rom... Florianópolis: CNPMS/EPAGRI, 2002.

MEDEIROS, S.L.P.; WESTPHALEN, S.L.; MATZENAUER, R.; BERGAMASCHI, H. Relações entre evapotranspiração e rendimento de grãos de milho. **Pesquisa Agropecuária Brasileira**, Brasília, v.26, n.1, p.1-10, 1991.

PATERNIANI, E. **Melhoramento e produção de milho no Brasil.** São Paulo: Fundação Cargill, 1978, 650p.

THORNTHWAITE, C.W. An approach toward a rational classification of climate. **Geogr. Rev.**, v.38, p.55-94, 1948.

THORNTHWAITE, C.W.; MATHER, J.R. The water balance. **Publications in climatology**, New Jersey, Drexel Institute of Technology, v.8, n.1, 1955. 104p.

THORNLEY, J.H.M. **Mathematical models in plant phisiology:** a quantitative approach to problems in plant crop phisiology. London: Academic Press, 1976. 318p.

Tabela 1. Variáveis agrometeorológicas e produtividade de milho observada e estimada pelo modelo.

Fonte	Semeadura	Genótipo	Rad.solar	Temperatura	Produtividade (kg ha ⁻¹)	
			(cal cm ⁻² dia ⁻¹)	(°C)	observada	estimada
Lima (1995)	outubro	XL-520	433	22,4	11157	10636
		XL-380	433	22,4	10765	11108
		XL-678	433	22,4	10577	11118
	agosto	XL-520	484	22,5	11961	9686
		XL-380	484	22,5	10470	10060
		XL-678	484	22,5	10508	10067
Gadioli (1999)	setembro	C901	443	22,9	10553	9208
		C333B	443	22,9	9859	10578
		C806	443	22,9	10258	9783
	outubro	C901	458	24,0	10570	8999
		C333B	458	24,0	9321	9627
		C806	458	24,0	9551	9524

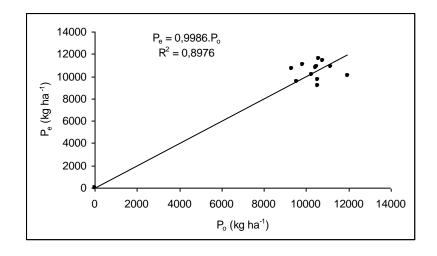


Figura 1. Comparação entre produtividade observada (P_o) e estimada (P_e) pelo modelo proposto.